Get access

Premotor neuronal plasticity in monkeys adapting to a new dynamic environment


Dr Jun Xiao, at *present address below.


Recent evidence indicates that premotor cortex (PM) in addition to their well-established motor functions, also play a role in nonmotor processes such as spatial attention and working memory. In the present study, neuronal activities in dorsal PM (PMd) and ventral PM (PMv) were recorded in a force field adaptation task. This study found that PM neurons show learning-related plasticity and that a neuron demonstrates either one type or multiple types of properties (i.e. kinematic, dynamic, and memory). The current study reveals that memory properties could be displayed by one or a combination of the cell activity parameters [i.e. average firing rate (AFR), dynamic range (DR), and preferred direction (PD)]. A predominant percentage of cells displayed memory properties with AFR or AFR plus other parameters. This study investigated the memory properties vs. the time sequence of the task trial [i.e. delay time (DT), movement time (MT), and target holding time (THT)] and found that: (i) most neurons display memory properties only in one time window; (ii) few neurons display memory properties in three time windows, and (iii) there are significantly more cells showing memory properties during MT than during any other time windows. There are cells that show memory I (changing their tuning curves in the force field and retaining those changes after the force field was removed), memory II (changing their tuning curves after the force field was removed), or both properties. Significantly more cells display one type of memory property (memory I or memory II) rather than both types of memory properties (memory I and memory II).

Get access to the full text of this article