Get access

Local activation of the nitric oxide/cyclic guanosine monophosphate pathway in growth cones regulates filopodial length via protein kinase G, cyclic ADP ribose and intracellular Ca2+ release


Dr Vincent Rehder, as above.


Nitric oxide (NO) is a gaseous messenger that has been shown to affect growth cone motility and neurite outgrowth in several model systems, but how NO brings about its effects is not understood. We have previously demonstrated that global and long-term application of NO to Helisoma trivolvis B5 neurons results in a transient increase in filopodial length, decrease in filopodial number and decrease in neurite outgrowth, all of which are mediated via soluble guanylyl cyclase (sGC) and involve an increase in the intracellular Ca2+ concentration [S. Van Wagenen & V. Rehder (1999)Journal of Neurobiology, 39, 168–185; K.R. Trimm & V. Rehder (2004)European Journal of Neuroscience, 19, 809–818]. The goal of the current study was twofold: to investigate the effects of short-term NO exposure on individual growth cones and to further elucidate the downstream pathway through which NO exerts its effects. Local application of the NO donor NOC-7 for 10–20 ms via puffer micropipette resulted in a transient increase in filopodial length and a small decrease in filopodial number. We show evidence that these effects of NO are mediated via sGC, protein kinase G and cyclic ADP ribose, resulting in the release of Ca2+ from intracellular stores, probably of the ryanodine-sensitive type. These results suggest that growth cones expressing sGC are highly sensitive to local and short-term exposure to NO, which they may experience during pathfinding, and that the stereotyped response of transient filopodial elongation seen in B5 neurons in response to NO requires intracellular Ca2+ release.