• common marmoset;
  • MPTP;
  • Parkinson's disease;
  • proteasome activity;
  • proteasome subunits;
  • ubiquitin-proteasome pathway


Dysfunction of the ubiquitin-proteasome system occurs in the substantia nigra (SN) in Parkinson's disease (PD). However, it is unknown whether this is a primary cause or a secondary consequence of other components of the pathogenic process. We have investigated in nonhuman primates whether initiating cell death through mitochondrial complex I inhibition using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) altered proteasomal activity or the proteasomal components in the SN. Chymotrypsin-like, trypsin-like and peptidylglutamyl-peptide hydrolase (PGPH) activating of 20S proteasome were decreased in SN homogenates of MPTP-treated marmosets compared to naïve animals. Western blotting revealed a marked decrease in the expression of 20S-α subunits, but no change in 20S-β subunits in the SN of MPTP-treated marmoset compared to naïve animals. There was a marked decrease in the expression of the proteasome activator 700 (PA700) and proteasome activator 28 (PA28) regulatory complexes. The 20S-α4 subunit immunoreactivity was decreased in the nucleus of colocalized tyrosine hydroxylase (TH)-positive cells of MPTP-treated animals compared to naïve animals but no difference in the intensity of 20S-β1i subunit staining. Immunoreactivity for PA700-Rpt5 and PA28-α subunits within surviving TH-positive cells of MPTP-treated marmoset was reduced compared to naïve controls. Overall, the changes in proteasomal function and structure occurring follow MPTP-induced destruction of the SN in common marmosets were very similar to those found in PD. This suggests that altered proteasomal function in PD could be a consequence of other pathogenic processes occurring in SN as opposed to initiating cell death as previously suggested.