Get access

A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision


Dr Marcello Rosa, as above.


We defined cortical areas involved in the analysis of motion in the far peripheral visual field, a poorly understood aspect of visual processing in primates. This was accomplished by small tracer injections within and around the representations of the monocular field of vision (‘temporal crescents’) in the middle temporal area (MT) of marmoset monkeys. Quantitative analyses demonstrate that the representation of the far periphery receives specific connections from the retrosplenial cortex (areas 23v and prostriata), as well as comparatively stronger inputs from the primary visual area (V1) and from areas surrounding MT (in particular, the medial superior temporal area, MST). In contrast, the far peripheral representation receives little or no input from most other extrastriate areas, including the second visual area (V2), the densely myelinated areas of the dorsomedial cortex, and ventral stream areas; these areas are shown to have robust projections to other parts of MT. Our results demonstrate that the responses of cells in different parts of a same visual area can be determined by different combinations of synaptic inputs, in terms of areas of origin. They also suggest that the interconnections responsible for motion processing in the far periphery of the visual field convey information that is crucial for rapid-response aspects of visual function such as orienting, postural and defensive reactions.