SEARCH

SEARCH BY CITATION

Keywords:

  • cingulate gyrus;
  • electroencephalogram;
  • finger movements;
  • LORETA;
  • task-related coherence;
  • task-related power

Abstract

Human brain oscillatory activity was analysed in the electroencephalographic theta frequency range (4–7 Hz) while subjects executed complex sequential finger movements with varying task difficulty and memory load. Local frontal-midline theta activity was associated with the general level of cognitive demand, with the highest amplitudes in the most demanding condition. Using low-resolution electromagnetic tomography analysis (LORETA), this theta activity was localized in the anterior cingulate gyrus including the cingulate motor area. These results suggest that local theta activity in the anterior cingulate gyrus represents correlates of an attentional system that allocate cognitive resources. In addition, interregional connectivity in the theta frequency range was modulated by memory-related executive functions independently of task difficulty. Connectivity analyses revealed a more distributed long-range network including frontal and parietal cortices during execution of novel compared with well-trained finger movement sequences. Thus, these results are compatible with a model in which theta long-range coupling indicates integration of sensory information into executive control components of complex motor behaviour.