• chloride conductance;
  • internal sodium role;
  • subthreshold regulation;
  • sympathetic neuron;
  • voltage clamp


The mechanisms that control chloride conductance (gCl) in the rat sympathetic neuron have been studied by the two-electrode voltage-clamp technique in mature, intact superior cervical ganglia in vitro. In addition to voltage dependence in the membrane potential range −120/−50 mV, gCl displays time- and activity-dependent regulation (sensitization). The resting membrane potential is governed by voltage-dependent gK and gCl, which determine values of cell input conductance ranging from 7 to 18 nS (full deactivation) to an upper value of about 130 nS (full activation and maximal gCl sensitization). The quiescent neuron, held at constant membrane potential, spontaneously and gradually moved from a low- to a high-conductance status. An increase (about 40 nS) in gCl accounted for this phenomenon, which could be prevented by imposing intermittent hyperpolarizing episodes. Following spike firing, gCl increased by 20–33 nS, independent of the cell conductance value preceding tetanization, and thereafter decayed to the pre-stimulus level within 5 min. Intracellular sodium depletion and its successive ionophoretic restoration moved the neuron from a stable low-conductance state to maximum gCl sensitization, pointing to a link between gCl sensitization and [Na+]i. The dependence of gCl build-up on [Na+]i and the time-course of such Na+-related modulation have been examined: gCl sensitization was absent at 0 [Na+]i, was well developed (20 nS) at 15 mm and tended towards a saturating value of 60 nS for higher [Na+]i. Sensitization was transient in response to neuron activity. In the silent neuron, sensitization of gCl shifted membrane potential over a range of about 15 mV.