• food;
  • olfactory nervous system;
  • orbitofrontal cortex;
  • reward;
  • taste


Umami taste is produced by glutamate acting on a fifth taste system. However, glutamate presented alone as a taste stimulus is not highly pleasant, and does not act synergistically with other tastes (sweet, salt, bitter and sour). We show here that when glutamate is given in combination with a consonant, savory, odour (vegetable), the resulting flavor can be much more pleasant. Moreover, we showed using functional brain imaging with fMRI that the glutamate taste and savory odour combination produced much greater activation of the medial orbitofrontal cortex and pregenual cingulate cortex than the sum of the activations by the taste and olfactory components presented separately. Supralinear effects were much less (and significantly less) evident for sodium chloride and vegetable odour. Further, activations in these brain regions were correlated with the pleasantness and fullness of the flavor, and with the consonance of the taste and olfactory components. Supralinear effects of glutamate taste and savory odour were not found in the insular primary taste cortex. We thus propose that glutamate acts by the nonlinear effects it can produce when combined with a consonant odour in multimodal cortical taste-olfactory convergence regions. We propose the concept that umami can be thought of as a rich and delicious flavor that is produced by a combination of glutamate taste and a consonant savory odour. Glutamate is thus a flavor enhancer because of the way that it can combine supralinearly with consonant odours in cortical areas where the taste and olfactory pathways converge far beyond the receptors.