SEARCH

SEARCH BY CITATION

References

  • Aitkin, L.M. & Boyd, J. (1978) Acoustic input to the lateral pontine nuclei. Hearing Res., 1, 6777.
  • Albus, J.S. (1971) A theory of cerebellar function. Math. Biosci., 10, 2561.
  • Armano, S., Rossi, P., Taglietti, V. & D'Angelo, E. (2000) Long-term potentiation of intrinsic excitability at the mossy fiber–granule cell synapse of rat cerebellum. J. Neurosci., 20, 52085216.
  • Audinat, E., Gähwiler, B.H. & Knöpfel, T. (1992) Excitatory synaptic potentials in neurons of the deep nuclei in olivo-cerebellar slice cultures. Neuroscience, 49, 903911.
  • Bal, T. & McCormick, D.A. (1997) Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih. J. Neurophysiol., 77, 31453156.
  • Bao, S., Chen, L., Kin, J.J. & Thompson, R.F. (2002) Cerebellar cortical inhibition and classical eyeblink conditioning. Proc. Natl Acad. Sci. USA, 99, 15921597.
  • Berthier, N.E. & Moore, J.W. (1986) Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp. Brain Res., 63, 341350.
  • Berthier, N.E. & Moore, J.W. (1990) Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Exp. Brain Res., 83, 4454.
  • Boyden, E.S., Katoh, A. & Raymond, J.L. (2004) Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annu. Rev. Neurosci., 27, 581609.
  • Brickley, S.G., Cull-Candy, S.G. & Farrant, M. (1999) Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci., 19, 29602973.
  • Bullock, D.F., Iala, J.C. & Grossberg, S. (1994) A neural model of timed response learning in the cerebellum. Neural Netw., 7, 11011114.
  • Buonomano, D.V. (2003) Timing of neural responses in cortical organotypic slices. Proc. Natl Acad. Sci. USA, 100, 48974902.
  • Buonomano, D.V. & Mauk, M.D. (1994) Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Comput., 6, 3855.
  • Caria, M.A., Melis, F., Solinas, A., Tavera, C. & Mameli, O. (2001) Frequency-dependent LTP/LTD in guinea pig Deiters' nucleus. Neuroreport, 12, 23532358.
  • Chapeau-Blondeau, F. & Chauvet, G. (1991) A neural network model of the cerebellar cortex performing dynamic associations. Biol. Cybern., 65, 267279.
  • Chen, C. & Thompson, R.F. (1995) Temporal specificity of long-term depression in parallel fiber Purkinje synapses in rat cerebellar slice. Learn. Mem., 2, 185198.
  • Christian, K.M. & Thompson, R.F. (2003) Neural substrates of eyeblink conditioning. Acquisition retention. Learn. Mem., 11, 427455.
  • Coesmans, M., Weber, J.T., De Zeeuw, C.I. & Hansel, C. (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44, 691700.
  • Compte, A., Constantinidis, C., Tegner, J., Raghavachari, S., Chafee, M.V., Goldman-Rakic, P.S. & Wang, X.J. (2003) Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. J. Neurophysiol., 90, 34413454.
  • Constantinidis, C., Williams, G.V. & Goldman-Rakic, P.S. (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat. Neurosci., 5, 175180.
  • Czubayko, U., Sultan, F., Thier, P. & Schwarz, C. (2001) Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. J. Neurophysiol., 85, 20172029.
  • D'Angelo, E., Filippi, G.D., Rossi, P. & Taglietti, V. (1995) Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. (Lond.), 484, 397413.
  • D'Angelo, E., Rossi, P., Armano, S. & Taglietti, V. (1999) Evidence for NMDA and mGlu receptordependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J. Neurophysiol., 81, 277287.
  • De Schutter, E. & Bower, J.M. (1994) An active membrane model of the cerebellar Purkinje cell I: simulation of current clamps in slice. J. Neurophysiol., 71, 375419.
  • De Zeeuw, C.I. & Berrebi, A.S. (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur. J. Neurosci., 7, 23222233.
  • Delgado-García, J. & Gruart, A. (2002) The role of interpositus nucleus in eyelid conditioning responses. Cerebellum, 1, 289308.
  • Dieudonné, S. (1998) Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J. Physiol. (Lond.), 510, 845866.
  • Eccles, J.C., Sakai, K. & Strata, P. (1967) A comparison of the inhibitory actions of Golgi cells and of basket cells. Exp. Brain Res., 3, 8194.
  • Edgley, S.A. & Lidierth, M. (1987) The discharges of cerebellar Golgi cells during locomotion in the cat. J. Physiol. (Lond.), 392, 315332.
  • Fiala, J.C., Grossberg, S. & Bullock, D. (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci., 16, 37603774.
  • Freeman, J.H.J. & Muckler, A.S. (2003) Developmental changes in eyeblink conditioning and neuronal activity in the pontine nuclei. Learn. Mem., 10, 337345.
  • Fujita, M. (1982) Adaptive filter model of the cerebellum. Biol. Cybern., 45, 195206.
  • Gabbiani, F., Midtgaard, J. & Knöpfel, T. (1994) Synaptic integration in a model of cerebellar granule cells. J. Neurophysiol., 72, 9991009.
  • Garcia, K.S. & Mauk, M.D. (1998) Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology, 37, 471480.
  • Gerstner, W. & Kistler, W.M. (2002) Spiking Neuron Models. Cambridge University Press, Cambridge.
  • Gluck, M.A., Reifsnider, E.S. & Thompson, R.F. (1990) Adaptive signal processing and the cerebellum: Models of classical conditioning and VOR adaptation. In Gluck, M.A. & Rumelhart, D.E. (eds), Neuroscience and Connectionist Theory. Erlbaum, Hillsdale, New Jersey, pp. 131186.
  • Hansel, C., Linden, D.J. & D'Angelo, E. (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat. Neurosci., 4, 467475.
  • Hartmann, M.J. & Bower, J.M. (1998) Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J. Neurophysiol., 80, 15981604.
  • Hesslow, G. & Ivarsson, M. (1994) Suppression of cerebellar Purkinje cells during conditioned responsesin ferrets. Neuroreport, 5, 649652.
  • Hirano, T., Watanabe, D., Kawaguchi, S.Y., Pastan, I. & Nakanishi, S. (2002) Role of inhibitory interneurons in the cerebellar cortex. Ann. NY Acad. Sci., 978, 405412.
  • Imamura, Y., Inokawa, H., Ito, A., Kadotani, H., Toyama, K., Noda, M., Nakanishi, S. & Hirano, T. (2000) Roles of GABAergic inhibition and NMDA receptor subunits in the spatio-temporal integration in the cerebellar cortex in mice. Neurosci. Res., 38, 289301.
  • Ito, M. (1984) The Cerebellum and Neuronal Control. Raven Press, New York.
  • Ito, M. (1989) Long-term depression. Annu. Rev. Neurosci., 12, 85102.
  • Ito, M. (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol. Rev., 81, 11431195.
  • Ito, M. (2002) The molecular organization of cerebellar long-term depression. Nat. Rev. Neurosci., 3, 896902.
  • Ivry, R.B. & Spencer, R.M. (2004) The neural representation of time. Curr. Opin. Neurobiol., 14, 225232.
  • Jirenhed, D.A., Bengtsson, F. & Hesslow, G. (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J. Neurosci., 27, 24932502.
  • Kadotani, H., Hirano, T., Masugi, M., Nakamura, K., Nakao, K., Katsuki, M. & Nakanishi, S. (1996) Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J. Neurosci., 16, 78597867.
  • Kenyon, G.T., Medina, J.F. & Mauk, M.D. (1998) A mathematical model of the cerebellar- olivary system I: self-regulating equilibrium of climbing fiber activity. J. Comput. Neurosci., 5, 1733.
  • Kishimoto, Y., Kawahara, S., Kirino, Y., Kadotani, H., Nakamura, Y., Ikeda, M. & Yoshioka, T. (1997) Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport, 8, 37173721.
  • Kleim, J.A., Freeman, J.H.J., Bruneau, R., Nolan, B.C., Cooper, N.R., Zook, A. & Walters, D. (2002) Synapse formation is associated with memory storage in the cerebellum. Proc. Natl Acad. Sci. USA, 99, 1322813231.
  • Kojima, S. & Goldman-Rakic, P.S. (1982) Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res., 248, 4349.
  • Kotaleski, J.H., Lester, D. & Blackwell, K.T. (2002) Subcellular interactions between parallel fibre and climbing fibre signals in Purkinje cells predict sensitivity of classical conditioning to interstimulus interval. Integr. Physiol. Behav. Sci., 37, 265292.
  • Kotani, S., Kawahara, S. & Kirino, Y. (2003) Purkinje cell activity during learning a new timing in classical eyeblink conditioning. Brain Res., 994, 193202.
  • Kotani, S., Kawahara, S. & Kirino, Y. (2006) Purkinje cell activity during classical eyeblink conditioning in decerebrate guinea pigs. Brain Res., 1068, 7081.
  • Lange, W. (1974) Regional differences in the distribution of Golgi cells in the cerebellar cortex of man and some other mammals. Cell Tissue Res., 153, 219226.
  • Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Volkovskii, A. & Abarbanel, H.D. (2001) Odor encoding as an active, dynamical process. Experiments, computation, and theory. Annu. Rev. Neurosci., 24, 263297.
  • Lev-Ram, V., Mehta, S.B., Kleinfeld, D. & Tsien, R.Y. (2003) Reversing cerebellar long-term depression. Proc. Natl Acad. Sci. USA, 100, 1598915993.
  • Llano, I., Marty, A., Armstrong, C.M. & Konnerth, A. (1991) Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J. Physiol. (Lond.), 434, 183213.
  • Llinás, R. & Yarom, Y. (1981) Electrophysiology of mammalian inferior olivary neurones in vitro different types of voltage-dependent ionic conductances. J. Physiol. (Lond.), 315, 549567.
  • Maass, W., Natschläger, T. & Markram, H. (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput., 14, 25312560.
  • Maex, R. & De Schutter, E. (1998) Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J. Neurophysiol., 80, 25212537.
  • Marr, D. (1969) A theory of cerebellar cortex. J. Physiol. (Lond.), 202, 437470.
  • Mauk, M.D. & Donegan, N.H. (1997) A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Mem., 3, 130158.
  • Mauk, M.D. & Ruiz, B.P. (1992) Learning-dependent timing of Pavlovian eyelid responses: Differential conditioning using multiple interstimulus intervals. Behav. Neurosci., 106, 666681.
  • McCormick, D.A. & Thompson, R.F. (1984a) Cerebellum: Essential involvement in the classically conditioned eyelid response. Science, 223, 296299.
  • McCormick, D.A. & Thompson, R.F. (1984b) Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J. Neurosci., 4, 28112822.
  • Medina, J.F., Garcia, K.S., Nores, W.L., Taylor, N.M. & Mauk, M.D. (2000) Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation. J. Neurosci., 20, 55165525.
  • Midtgaard, J. (1992) Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro. J. Physiol. (Lond.), 457, 329354.
  • Moore, J.W., Desmond, J.E. & Berthier, N.E. (1989) Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol. Cybern., 62, 1728.
  • Mouginot, D. & Gähwiler, B.H. (1995) Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience, 64, 699712.
  • Niki, H. & Watanabe, M. (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res., 171, 213224.
  • Ohyama, T. & Mauk, M.D. (2001) Latent acquisition of timed responses in cerebellar cortex. J. Neurosci., 21, 682690.
  • Ohyama, T., Nores, W.L., Murphy, M. & Mauk, M.D. (2003) What the cerebellum computes. Trends Neurosci., 26, 222227.
  • Palkovits, M., Magyar, P. & Szentágothai, J. (1971a) Quantitative histological analysis of the cerebellar cortex in the cat I number and arrangement in space of the Purkinje cells. Brain Res., 32, 113.
  • Palkovits, M., Magyar, P. & Szentágothai, J. (1971b) Quantitative histological analysis of the cerebellar cortex in the cat II cell numbers and densities in the granular layer. Brain Res., 32, 1332.
  • Palkovits, M., Magyar, P. & Szentágothai, J. (1972) Quantitative histological analysis of the cerebellar cortex in the cat IV mossy fiber-Purkinje cell numerical transfer. Brain Res., 45, 1529.
  • Pellerin, J.P. & Lamarre, Y. (1997) Local field potential oscillations in primate cerebellar cortex during voluntary movement. J. Neurophysiol., 78, 35023507.
  • Perrett, S.P., Ruiz, B.P. & Mauk, M.D. (1993) Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J. Neurosci., 13, 17081718.
  • Puia, G., Costa, E. & Vicini, S. (1994) Functional diversity of GABA-activated Cl currents in Purkinje versus granule neurons in rat cerebellar slices. Neuron, 12, 117126.
  • Racine, R., Wilson, D., Gingell, R. & Sunderland, D. (1986) Long-term potentiation in the interpositus and vestibular nuclei in the rat. Exp. Brain Res., 63, 158162.
  • Rosenblatt, M. (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev., 65, 386408.
  • Schweighofer, N., Doya, K. & Kawato, M. (1999) Electrophysiological properties of inferior olive neurons: a compartmental model. J. Neurophysiol., 82, 804812.
  • Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S. & Nagao, S. (2006) Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience, 139, 767777.
  • Silver, R.A., Traynelis, S.F. & Cull-Candy, S.G. (1992) Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature, 355, 163166.
  • Watanabe, D., Inokawa, H., Hashimoto, K., Suzuki, N., Kano, M., Shigemoto, R., Hirano, T., Toyama, K., Kaneko, S., Yokoi, M., Moriyoshi, K., Suzuki, M., Kobayashi, K., Nagatsu, T., Kreitman, R.J., Pastan, I. & Nakanishi, S. (1998) Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell, 95, 1727.
  • Watanabe, M., Mishima, M. & Inoue, Y. (1994) Distinct spatiotemporal expressions of five NMDA receptor channel subunit mRNAs in the cerebellum. J. Comp. Neurol., 343, 513519.
  • Wilson, R.I. & Laurent, G. (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the drosophila antennal lobe. J. Neurosci., 25, 90699079.
  • Wolpert, D.M., Miall, R.C. & Kawato, M. (1998) Internal models in the cerebellum. Trends Cogn. Sci., 2, 338347.
  • Yamazaki, T. & Tanaka, S. (2005a) Neural modeling of an internal clock. Neural Comput., 17, 10321058.
  • Yamazaki, T. & Tanaka, S. (2005b) Realistic modeling of the cerebellum. Soc. Neurosci. Abstr., 413.6.
  • Yamazaki, T. & Tanaka, S. (2006) Input-dependent transition between a synchronized state and a time-representing state in the model cerebellar granular layer. Soc. Neurosci. Abstr., 653.15.
  • Yamazaki, T. & Tanaka, S. (2007) The cerebellum as a liquid state machine. Neural Netw., 20, 290297.