SEARCH

SEARCH BY CITATION

References

  • Baulac, S., Lavoie, M.J., Strahle, J., Schlossmacher, M.G. & Xia, W. (2004) Dimerization of Parkinson's disease-causing DJ-1 and formation of high molecular weight complexes in human brain. Mol. Cell. Neurosci., 27, 236246.
  • Capell, A., Grunberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., Beyreuther, K., Selkoe, D.J. & Haass, C. (1998) The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem., 273, 32053211.
  • Chung, K.K., Zhang, Y., Lim, K.L., Tanaka, Y., Huang, H., Gao, J., Ross, C.A., Dawson, V.L. & Dawson, T.M. (2001) Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med., 7, 11441150.
  • Corti, O., Hampe, C., Koutnikova, H., Darios, F., Jacquier, S., Prigent, A., Robinson, J.C., Pradier, L., Ruberg, M., Mirande, M., Hirsch, E., Rooney, T., Fournier, A. & Brice, A. (2003) The p38 subunit of the aminoacyl-tRNA synthetase complex is a parkin substrate: linking protein biosynthesis and neurodegeneration. Hum. Mol. Genet., 15, 14271437.
  • Dachsel, J.C., Lücking, C.B., Deeg, S., Schultz, E., Lalowski, M., Casademunt, E., Corti, O., Hampe, C., Patenge, N., Vaupel, K., Yamamoto, A., Dichgans, M., Brice, A., Wanker, E.E., Kahle, P.J. & Gasser, T. (2005) Parkin interacts with the proteasome subunit α4. FEBS Lett., 579, 39133919.
  • De Strooper, B. (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active γ-secretase complex. Neuron, 38, 912.
  • Fallon, L., Bélanger, C.M., Corera, A.T., Kontogiannea, M., Regan-Klapisz, E., Moreau, F., Voortman, J., Haber, M., Rouleau, G., Thorarinsdottir, T., Brice, A., Van Bergen en Henegouwen, P.M. & Fon, E.A. (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3) K-Akt signalling. Nat. Cell. Biol., 8, 834842.
  • Fallon, L., Moreau, F., Croft, B.G., Labib, N., Gu, W.J. & Fon, E.A. (2002) Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J. Biol. Chem., 277, 486491.
  • Hampe, C., Ardila-Osorio, H., Fournier, M., Brice, A. & Corti, O. (2006) Biochemical analysis of Parkinson's disease-causing variants of parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum. Mol. Genet., 15, 20592075.
  • Henn, I.H., Bouman, L., Schlehe, J.S., Schlierf, A., Schramm, J.E., Wegener, E., Nakaso, K., Culmsee, C., Berninger, B., Krappmann, D., Tatzelt, J. & Winklhofer, K.F. (2007) Parkin mediates neuroprotection through activation of IκB kinase/nuclear factor-κB signaling. J. Neurosci., 27, 18681878.
  • Henn, I.H., Gostner, J.M., Lackner, P., Tatzelt, J. & Winklhofer, K.F. (2005) Pathogenic mutations inactivate parkin by distinct mechanisms. J. Neurochem., 92, 114122.
  • Huynh, D.P., Nguyen, D.T., Pulst-Korenberg, J.B., Brice, A. & Pulst, S.M. (2007) Parkin is an E3 ubiquitin-ligase for normal and mutant ataxin-2 and prevents ataxin-2-induced cell death. Exp. Neurol., 203, 531541.
  • Imai, Y., Soda, M., Hatakeyama, S., Akagi, T., Hashikawa, T., Nakayama, K.I. & Takahashi, R. (2002) CHIP is associated with parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol. Cell., 10, 5567.
  • Imai, Y., Soda, M., Inoue, H., Hattori, N., Mizuno, Y. & Takahashi, R. (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin. Cell, 105, 891902.
  • Imai, Y., Soda, M. & Takahashi, R. (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem., 275, 3566135664.
  • Itier, J.M., Ibanez, P., Mena, M.A., Abbas, N., Cohen-Salmon, C., Bohme, G.A., Laville, M., Pratt, J., Corti, O., Pradier, L., Ret, G., Joubert, C., Periquet, M., Araujo, F., Negroni, J., Casarejos, M.J., Canals, S., Solano, R., Serrano, A., Gallego, E., Sanchez, M., Denefle, P., Benavides, J., Tremp, G., Rooney, T.A., Brice, A. & Garcia de Yebenes, J. (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet., 12, 22772291.
  • Kalia, S.K., Lee, S., Smith, P.D., Liu, L., Crocker, S.J., Thorarinsdottir, T.E., Glover, J.R., Fon, E.A., Park, D.S. & Lozano, A.M. (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron, 44, 931945.
  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. & Shimizu, N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 544545.
  • LaVoie, M.J., Ostaszewski, B.L., Weihofen, A., Schlossmacher, M.G. & Selkoe, D.J. (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat. Med., 11, 12141221.
  • Lee, M.C., Hamamoto, S. & Schekman, R. (2002) Ceramide biosynthesis is required for the formation of the oligomeric H+-ATPase Pma1p in the yeast endoplasmic reticulum. J. Biol. Chem., 277, 2239522401.
  • Lim, K.L., Chew, K.C., Tan, J.M., Wang, C., Chung, K.K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C.A., Dawson, V.L. & Dawson, T.M. (2005) Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci., 25, 20022009.
  • Lücking, C.B., Dürr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., Harhangi, B.S., Meco, G., Denefle, P., Wood, N.W., Agid, Y. & Brice, A. (2000) French Parkinson's Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson's Disease. Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med., 342, 15601567.
  • Pawlyk, A.C., Giasson, B.I., Sampathu, D.M., Perez, F.A., Lim, K.L., Dawson, V.L., Dawson, T.M., Palmiter, R.D., Trojanowski, J.Q. & Lee, V.M. (2003) Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J. Biol. Chem., 278, 4812048128.
  • Ren, Y., Zhao, J. & Feng, J. (2003) Parkin binds to α/β tubulin and increases their ubiquitination and degradation. J. Neurosci., 23, 33163324.
  • Sakata, E., Yamaguchi, Y., Kurimoto, E., Kikuchi, J., Yokoyama, S., Yamada, S., Kawahara, H., Yokosawa, H., Hattori, N., Mizuno, Y., Tanaka, K. & Kato, K. (2003) Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Report, 4, 301306.
  • Sato, S., Chiba, T., Sakata, E., Kato, K., Mizuno, Y., Hattori, N. & Tanaka, K. (2006) 14-3-3η is a novel regulator of parkin ubiquitin ligase. EMBO J., 25, 211221.
  • Schägger, H., Cramer, W.A. & Von Jagow, G. (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem., 217, 220230.
  • Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K. & Suzuki, T. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet., 25, 302305.
  • Shimura, H., Schlossmacher, M.G., Hattori, N., Frosch, M.P., Trockenbacher, A., Schneider, R., Mizuno, Y., Kosik, K.S. & Selkoe, D.J. (2001) Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science, 293, 263269.
  • Smith, W.W., Pei, Z., Jiang, H., Moore, D.J., Liang, Y., West, A.B., Dawson, V.L., Dawson, T.M. & Ross, C.A. (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl Acad. Sci. USA, 102, 1867618681.
  • Sriram, S.R., Li, X., Ko, H.S., Chung, K.K., Wong, E., Lim, K.L., Dawson, V.L. & Dawson, T.M. (2005) Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum. Mol. Genet., 14, 25712586.
  • Staropoli, J.F., McDermott, C., Martinat, C., Schulman, B., Demireva, E. & Abeliovich, A. (2003) Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron, 37, 735749.
  • Um, J.W., Min, D.S., Rhim, H., Kim, J., Paik, S.R. & Chung, K.C. (2006) Parkin ubiquitinates and promotes the degradation of RanBP2. J. Biol. Chem., 281, 35953603.
  • Vandenberghe, W., Nicoll, R.A. & Bredt, D.S. (2005a) Stargazin is an AMPA receptor auxiliary subunit. Proc. Natl Acad. Sci. USA, 102, 485490.
  • Vandenberghe, W., Nicoll, R.A. & Bredt, D.S. (2005b) Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport. J. Neurosci., 25, 10951102.
  • Wang, C., Ko, H.S., Thomas, B., Tsang, F., Chew, K.C., Tay, S.P., Ho, M.W., Lim, T.M., Soong, T.W., Pletnikova, O., Troncosa, J., Dawson, V.L., Dawson, T.M. & Lim, K.L. (2005) Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum. Mol. Genet., 14, 38853897.
  • Winklhofer, K.F., Henn, I.H., Kay-Jackson, P.C., Heller, U. & Tatzelt, J. (2003) Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J. Biol. Chem., 278, 4719947208.
  • Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J.L. & Brown, M.S. (2002) Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 110, 489500.
  • Yang, F., Jiang, Q., Zhao, J., Ren, Y., Sutton, M.D. & Feng, J. (2005) Parkin stabilizes microtubules through strong binding mediated by three independent domains. J. Biol. Chem., 280, 1715417162.
  • Zhang, Y., Gao, J., Chung, K.K., Huang, H., Dawson, V.L. & Dawson, T.M. (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci. USA, 97, 1335413359.