SEARCH

SEARCH BY CITATION

References

  • Baunez, C. & Robbins, T.W. (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur. J. Neurosci., 9, 20862099.
  • Berendse, H.W., Galis-de Graaf, Y. & Groenewegen, H.J. (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J. Comp. Neurol., 316, 314347.
  • Brog, J.S., Salyapongse, A., Deutch, A.Y. & Zahm, D.S. (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol., 338, 255278.
  • Cardinal, R.N. (2002) FiveChoice (version 3.3). Cambridge University Technical Services Ltd, Cambridge, UK, pp. computer software.
  • Cardinal, R.N. & Aitken, M.R.F. (2001) Whisker (version 2). Cambridge University Technical Services Ltd, Cambridge, UK, pp. computer software.
  • Cardinal, R.N. & Aitken, M.R.F. 2006. ANOVA for the Behavioural Sciences Researcher. Lawrence Erlbaum Associates, Inc., London.
  • Cardinal, R.N. & Cheung, T.H. (2005) Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci., 6, 9.
  • Cardinal, R.N., Pennicott, D.R., Sugathapala, C.L., Robbins, T.W. & Everitt, B.J. (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292, 24992501.
  • Cardinal, R.N., Parkinson, J.A., Lachenal, G., Halkerston, K.M., Rudarakanchana, N., Hall, J., Morrison, C.H., Howes, S.R., Robbins, T.W. & Everitt, B.J. (2002) Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci., 116, 553567.
  • Carli, M., Robbins, T.W., Evenden, J.L. & Everitt, B.J. (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav. Brain Res., 9, 361380.
  • Christakou, A., Robbins, T.W. & Everitt, B.J. (2004) Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J. Neurosci., 24, 773780.
  • Chudasama, Y. & Muir, J.L. (2001) Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behav. Neurosci., 115, 417428.
  • Chudasama, Y., Passetti, F., Rhodes, S.E., Lopian, D., Desai, A. & Robbins, T.W. (2003a) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav. Brain Res., 146, 105119.
  • Chudasama, Y., Baunez, C. & Robbins, T.W. (2003b) Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: evidence for corticosubthalamic interaction. J. Neurosci., 23, 54775485.
  • Cole, B.J. & Robbins, T.W. (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology (Berl), 91, 458466.
  • Cole, B.J. & Robbins, T.W. (1989) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav. Brain Res., 33, 165179.
  • Corbit, L.H., Muir, J.L. & Balleine, B.W. (2001) The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. J. Neurosci., 21, 32513260.
  • Coutureau, E. & Killcross, S. (2003) Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav. Brain Res., 146, 167174.
  • Dalley, J.W., Thomas, K.L., Howes, S.R., Tsai, T.H., Aparicio-Legarza, M.I., Reynolds, G.P., Everitt, B.J. & Robbins, T.W. (1999) Effects of excitotoxic lesions of the rat prefrontal cortex on CREB regulation and presynaptic markers of dopamine and amino acid function in the nucleus accumbens. Eur. J. Neurosci., 11, 12651274.
  • Dalley, J.W., Theobald, D.E., Eagle, D.M., Passetti, F. & Robbins, T.W. (2002a) Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology, 26, 716728.
  • Dalley, J.W., Theobald, D.E., Pereira, E.A., Li, P.M. & Robbins, T.W. (2002b) Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl), 164, 329340.
  • Dalley, J.W., Fryer, T.D., Brichard, L., Robinson, E.S.J., Theobald, D.E., Laane, K., Pena, Y., Murphy, E.R., Shah, Y., Probst, K., Abakumova, I., Aigbirhio, F.I., Richards, H.K., Hong, Y., Baron, J.-C., Everitt, B.J. & Robbins, T.W. (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315, 12671270.
  • Di Ciano, P. & Everitt, B.J. (2001) Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology, 25, 341360.
  • Dickinson, A., Squire, S., Varga, Z. & Smith, J.W. (1998) Omission learning after instrumental pretraining. Q. J. Exp. Psychol., 51B, 271286.
  • Van Dongen, Y.C., Deniau, J.M., Pennartz, C.M., Galis-de Graaf, Y., Voorn, P., Thierry, A.M. & Groenewegen, H.J. (2005) Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens. Neuroscience, 136, 10491071.
  • Eagle, D.M. & Robbins, T.W. (2003) Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav. Brain Res., 146, 131144.
  • Evenden, J.L. (1999) Varieties of impulsivity. Psychopharmacology (Berl), 146, 348361.
  • Floresco, S.B., Ghods-Sharifi, S., Vexelman, C. & Magyar, O. (2006) Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. J. Neurosci., 26, 24492457.
  • Van Gaalen, M.M., Brueggeman, R.J., Bronius, P.F., Schoffelmeer, A.N. & Vanderschuren, L.J. (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology (Berl), 187, 7385.
  • Grillner, S., Hellgren, J., Menard, A., Saitoh, K. & Wikstrom, M.A. (2005) Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci., 28, 364370.
  • Groenewegen, H.J., Wright, C.I. & Beijer, A.V. (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog. Brain Res., 107, 485511.
  • Groenewegen, H.J., Wright, C.I., Beijer, A.V. & Voorn, P. (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann. N Y Acad. Sci., 877, 4963.
  • Haber, S.N., Fudge, J.L. & McFarland, N.R. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci., 20, 23692382.
  • Harrison, A.A., Everitt, B.J. & Robbins, T.W. (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berl), 133, 329342.
  • Heidbreder, C. & Feldon, J. (1998) Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Synapse, 29, 310322.
  • Huynh, H. & Feldt, L. (1970) Conditions under which mean square ratios in repeated measures designs have exact F-distributions. J. Am. Stat. Assoc., 65, 15821589.
  • Ito, R., Robbins, T.W. & Everitt, B.J. (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat. Neurosci., 7, 389397.
  • Levene, H. (1960) Robust tests for the equality of variances. In Oklin, I. (Ed.), Contributions to Probability and Statistics. Stanford University Press, Palo Alto, CA. pp. 278292.
  • Liu, Y.P. (2002) The effects of Isolation-Rearing on Attentional Function and Impulse Control in Rats: Behavioural and Neurochemical Studies. Thesis. Experimental Psychology, University of Cambridge, Cambridge.
  • Lomber, S.G. (1999) The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J. Neurosci. Methods, 86, 109117.
  • Maldonado-Irizarry, C.S., Swanson, C.J. & Kelley, A.E. (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J. Neurosci., 15, 67796788.
  • Mauchly, J. (1940) Significance test of sphericity of a normal n-variate distribution. Ann. Math. Stat., 11, 204209.
  • Mogenson, G.J., Jones, D.L. & Yim, C.Y. (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol., 14, 6997.
  • Murphy, E.R. (2007) Neural and Neurochemical Basis of Executive Function in Fronto-striatal System in the Rat. Thesis. Department of Experimental Psychology, University of Cambridge, Cambridge.
  • Murphy, E.R., Dalley, J.W. & Robbins, T.W. (2005) Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology (Berl), 179, 99107.
  • Packard, M.G. & Knowlton, B.J. (2002) Learning and memory functions of the Basal Ganglia. Annu. Rev. Neurosci., 25, 563593.
  • Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci., 19, 24012411.
  • Pattij, T., Janssen, M.C., Vanderschuren, L.J., Schoffelmeer, A.N. & Van Gaalen, M.M. (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology (Berl), 191, 587598.
  • Paxinos, G. & Watson, C. 1998. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York.
  • Pothuizen, H.H., Jongen-Relo, A.L., Feldon, J. & Yee, B.K. (2005a) Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. Eur. J. Neurosci., 22, 26052616.
  • Pothuizen, H.H., Jongen-Relo, A.L. & Feldon, J. (2005b) The effects of temporary inactivation of the core and the shell subregions of the nucleus accumbens on prepulse inhibition of the acoustic startle reflex and activity in rats. Neuropsychopharmacology, 30, 683696.
  • Pothuizen, H.H., Feldon, J. & Yee, B.K. (2006) Facilitated extinction of appetitive instrumental conditioning following excitotoxic lesions of the core or the medial shell subregion of the nucleus accumbens in rats. Exp. Brain Res., 172, 120128.
  • Rogers, R.D., Baunez, C., Everitt, B.J. & Robbins, T.W. (2001) Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behav. Neurosci., 115, 799811.
  • Schoenfeld, T.A. & Hamilton, L.W. (1977) Secondary brain changes following lesions: a new paradigm for lesion experimentation. Physiol. Behav., 18, 951967.
  • Vertes, R.P. (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51, 3258.
  • Voorn, P., Vanderschuren, L.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M. (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci., 27, 468474.
  • Weiner, I. (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl), 169, 257297.
  • Weiner, I., Gal, G., Rawlins, J.N. & Feldon, J. (1996) Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav. Brain Res., 81, 123133.
  • Winstanley, C.A., Dalley, J.W., Theobald, D.E. & Robbins, T.W. (2004a) Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology, 29, 13311343.
  • Winstanley, C.A., Eagle, D.M. & Robbins, T.W. (2006) Behavioural models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin. Psychol. Rev., 26, 379395.
  • Wyvell, C.L. & Berridge, K.C. (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J. Neurosci., 20, 81228130.
  • Yin, H.H. & Knowlton, B.J. (2006) The role of the basal ganglia in habit formation. Nat. Rev. Neurosci., 7, 464476.
  • Yun, I.A., Nicola, S.M. & Fields, H.L. (2004) Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. Eur. J. Neurosci., 20, 249263.
  • Zahm, D.S. (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann. N Y Acad. Sci., 877, 113128.
  • Zahm, D.S. (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci. Biobehav. Rev., 24, 85105.