Get access

Transcranial Doppler ultrasound during galvanic labyrinth polarization depicts central vestibular processing, demonstrating bilateral vestibular projection

Authors


Dr H.-G. Schlosser, as above.
E-mail: hans-georg.schlosser@charite.de

Abstract

The combination of galvanic labyrinth polarization and transcranial Doppler ultrasound was employed to depict the neurovascular coupling in the cerebral vestibular areas. For galvanic stimulation, surface electrodes were attached to the right and left mastoid and two further electrodes were fixed near to each shoulder blade. Thus, each pair of electrodes (mastoid to shoulder) facilitated unilateral stimulation of the ipsilateral vestibular labyrinth. Blood flow in the middle cerebral artery and the internal carotid artery in both hemispheres was measured by means of Doppler ultrasound. The transcranial Doppler ultrasound system was head-fixed and allowed continuous monitoring of the blood flow throughout the trials. Using a series of different stimulation modes (bilateral, unilateral left, unilateral right and sham), the changes in mean blood flow velocity were evaluated by comparing baseline blood flow under resting conditions to blood flow during stimulation. A total of 18 trials were performed with each of seven volunteer subjects. Galvanic labyrinth polarization elicited a clear sensation of pendular body movement in all subjects. Significant blood flow increase (< 0.05) in both hemispheres was observed during bilateral stimulation. Of more interest is that unilateral stimulation also elicited a significant increase in flow in both the ipsilateral and the contralateral hemispheres, demonstrating the existence of bilateral projections from each vestibular labyrinth. The combination of galvanic labyrinth polarization with transcranial Doppler ultrasound blood flow measurement provides a novel approach to the functional assessment of the vestibular system (deep cerebral structures and cortical areas). This novel technique provides a useful tool for clinical examinations.

Get access to the full text of this article

Ancillary