SEARCH

SEARCH BY CITATION

References

  • Artinger, K.B., Chitnis, A.B., Mercola, M. & Driever, W. (1999) Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Development, 126, 39693979.
  • Van Asselt, E., De Graaf, F. & Van Raamsdonk, W. (1993) Ultrastructural characteristics of zebrafish spinal motoneurons innervating glycolytic white, and oxidative red and intermediate muscle fibers. Acta Histochem., 95, 3144.
  • Baxendale, S., Davison, C., Muxworthy, C., Wolff, C., Ingham, P.W. & Roy, S. (2004) The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nat. Genet., 36, 8893.
  • Beattie, C.E., Hatta, K., Halpern, M.E., Liu, H., Eisen, J.S. & Kimmel, C.B. (1997) Temporal separation in the specification of primary and secondary motoneurons in zebrafish. Dev. Biol., 187, 171182.
  • Borodinsky, L.N., Root, C.M., Cronin, J.A., Sann, S.B., Gu, X. & Spitzer, N.C. (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature, 429, 523530.
  • Brehm, P., Steinbach, J.H. & Kidokoro, Y. (1982) Channel open time of acetylcholine receptors on Xenopus muscle cells in dissociated cell culture. Dev. Biol., 91, 93102.
  • Clements, J.D. & Westbrook, G.L. (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-aspartate receptor. Neuron, 7, 605613.
  • Colquhoun, D. & Sakmann, B. (1981) Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature, 294, 464466.
  • Coutts, C.A., Patten, S.A., Balt, L.N. & Ali, D.W. (2006) Development of ionic currents of zebrafish slow and fast skeletal muscle fibers. J. Neurobiol., 66, 220235.
  • Crow, M.T. & Stockdale, F.E. (1986) The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev. Biol., 118, 333342.
  • Downes, G.B. & Granato, M. (2006) Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. J. Neurobiol., 66, 437451.
  • Downing, J. & Role, L. (1987) Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc. Natl Acad. Sci. USA, 84, 77397743.
  • Van Eeden, F.J., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., Warga, R.M., Allende, M.L., Weinberg, E.S. & Nüsslein-Volhard, C. (1996) Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development, 123, 153164.
  • Eisen, J.S. & Melancon, E. (2001) Interactions with identified muscle cells break motoneuron equivalence in embryonic zebrafish. Nat. Neurosci., 4, 10651070.
  • Eisen, J.S., Myers, P.Z. & Westerfield, M. (1986) Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature, 320, 269271.
  • Eisen, J.S., Pike, S.H. & Romancier, B. (1990) An identified motoneuron with variable fates in embryonic zebrafish. J. Neurosci., 10, 3443.
  • Ekker, M., Wegner, J., Akimenko, M. & Westerfield, M. (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development, 116, 10011010.
  • Fashena, D. & Westerfield, M. (1999) Secondary motoneuron axons localize DM-GRASP on their fasciculated segments. J. Comp. Neuro., 406, 415424.
  • Gnuegge, L., Schmid, S. & Neuhauss, S.C.F. (2001) Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map. J. Neurosci., 21, 35423548.
  • De Graaf, F., Van Raamsdonk, W., Van Asselt, E. & Diegenbach, P. (1990) Identification of motoneurons in the spinal cord of the zebrafish (Brachydanio rerio), with special reference to motoneurons that innervate intermediate muscle fibers. Anat. Embryol., 182, 93102.
  • Granato, M., Van Eeden, F.J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J. & Nusslein-Volhard, C. (1996) Genes controlling and mediating locomotor behavior of the zebrafish embryo and larva. Development, 123, 399413.
  • Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch., 391, 85100.
  • Hanson, M.G. & Landmesser, L.T. (2004) Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron, 43, 687701.
  • Hanson, M.G. & Landmesser, L.T. (2006) Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons. J. Neurosci., 26, 1276912780.
  • Hernandez-Lagunas, L., Choi, I.F., Kaji, T., Simpson, P., Hershey, C., Zhou, Y., Zon, L., Mercola, M. & Artinger, K.B. (2005) Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev. Biol., 278, 347357.
  • Hutchinson, S.A. & Eisen, J.S. (2006) Islet1 and Islet2 have equivalent abilities to promote motoneuron formation and to specify motoneuron subtype identity. Development, 133, 21372147.
  • Hutchinson, S.A., Cheesman, S.E., Hale, L.A., Boone, J.Q. & Eisen, J.S. (2007) Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression. Development, 134, 16711677.
  • Ingham, P.W. (1997) Zebrafish genetics and its implications for understanding vertebrate development. Hum. Mol. Genet., 6, 17551760.
  • Jarecki, J. & Keshishian, H. (1995) Role of neural activity during synaptogenesis in Drosophila. J. Neurosci., 15, 81778190.
  • Katz, L.C. & Shatz, C.J. (1996) Synaptic activity and the construction of cortical circuits. Science, 274, 11331138.
  • Kawahara, A., Chien, C.B. & Dawid, I.B. (2002) The homeobox gene mbx is involved in eye and tectum development. Dev. Biol., 248, 107117.
  • Keshishian, H., Chang, T.N. & Jarecki, J. (1994) Precision and plasticity during Drosophila neuromuscular development. FASEB J., 8, 731737.
  • Lefebvre, J.L., Ono, F., Puglielli, C., Seidner, G., Franzini-Armstrong, C., Brehm, P. & Granato, M. (2004) Increased neuromuscular activity causes axonal defects and muscular degeneration. Development, 131, 26052618.
  • Legendre, P. (1998) A reluctant gating mode of glycine receptor channels determines the time course of inhibitory miniature synaptic events in zebrafish hindbrain neurons. J. Neurosci., 18, 28562870.
  • Lewis, K.E. & Eisen, J.S. (2003) From cells to circuits: development of the zebrafish spinal cord. Prog. Neurobiol., 69, 419449.
  • Melancon, E., Liu, D.W.C., Westerfield, M. & Eisen, J.S. (1997) Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers. J. Neurosci., 17, 77967804.
  • Metcalfe, W., Myers, P., Trevarrow, B., Bass, M. & Kimmel, C. (1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development, 110, 491504.
  • Miller, J., Teal, S. & Stockdale, F. (1989) Evolutionarily conserved sequences of striated muscle myosin heavy chain isoforms. Epitope mapping by cDNA expression. J. Biol. Chem., 264, 1312213130.
  • Ono, F., Higashijima, S., Shcherbatko, A., Fetcho, J.R. & Brehm, P. (2001) Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J. Neurosci., 21, 54395448.
  • Ott, H., Diekmann, H., Stuermer, C.A.O. & Bastmeyer, M. (2001) Function of neurolin (DM-GRASP/SC-1) in guidance of motor axons during zebrafish development. Dev. Biol., 235, 8697.
  • Paradiso, K. & Brehm, P. (1998) Long-term desensitization of nicotinic acetylcholine receptors is regulated via protein kinase A-mediated phosphorylation. J. Neurosci., 22, 92279237.
  • Patel, N., Kornberg, T. & Goodman, C. (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development, 107, 201212.
  • Pineda, R.H., Heiser, R.A. & Ribera, A.B. (2005) Developmental, molecular, and genetic dissection of INa in vivo in embryonic zebrafish sensory neurons. J. Neurophysiol., 93(6), 35833593.
  • Pineda, R.H., Svoboda, K.R., Wright, M.A., Taylor, A.D., Novak, A.E., Gamse, J.T., Eisen, J.S. & Ribera, A.B. (2006) Knockdown of Nav 1.6a Na+ channels affects zebrafish motoneuron development. Development, 133, 38273836.
  • Van Raamsdonk, W., Mos, W., Smit-Onel, M., Van Der Laarse, W. & Fehres, R. (1983) The development of the spinal motor column in relation to the myotomal muscle fibers in the zebrafish (Brachydanio rerio). I. Posthatching development. Anat. Embryol., 167, 125139.
  • Ribera, A.B. & Nusslein-Volhard, C. (1998) Zebrafish touch-insensitive mutants reveal an essential role for developmental regulation of sodium current. J. Neurosci., 18, 91819191.
  • Roy, S. & Ng, T. (2004) Blimp-1 specifies neural crest and sensory neuron progenitors in the zebrafish embryo. Curr. Biol., 14, 17721777.
  • Roy, S., Wolff, C. & Ingham, P.W. (2001) The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev., 15, 15631576.
  • Saint-Amant, L. & Drapeau, P. (1998) Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol., 37, 622632.
  • Sakmann, B. & Brenner, H. (1978) Change in synaptic channel gating during neuromuscular development. Nature, 5686, 401402.
  • Schneider, V.A. & Granato, M. (2006) The myotomal diwanka (lh3) glycosyltransferase and type XVIII collagen are critical for motor growth cone migration. Neuron, 50, 683695.
  • Shatz, C.J. (1990) Impulse activity and the patterning of connections during cns development. Neuron, 5, 745756.
  • Spitzer, N.C., Root, C.M. & Borodinsky, L.N. (2004) Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice. Trends Neurosci., 27, 415421.
  • Stryker, M.P. & Harris, W.A. (1986) Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci., 6, 21172133.
  • Svoboda, K.R., Linares, A.E. & Ribera, A.B. (2001) Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development, 128, 35113520.
  • Svoboda, K.R., Vijayaraghavan, S. & Tanguay, R.L. (2002) Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci., 22, 1073110741.
  • Thomas, L.T., Welsh, L., Galvez, F. & Svoboda, K.R. (in press) Acute nicotine exposure and modulation of a spinal motor circuit in embryonic zebrafish. Toxicol. Appl. Pharmacol.
  • Trevarrow, B., Marks, D.L. & Kimmel, C.B. (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron, 4, 669679.
  • Welsh, L., Tanguay, R.L. & Svoboda, K.R. (in press) Uncoupling nicotine mediated motoneuron axonal path-finding errors from muscle degeneration in zebrafish. Toxicol. Appl. Pharmacol.
  • Westerfield, M. 1995. The Zebrafish Book. University of Oregon, Eugene, OR.
  • Westerfield, M., Liu, D.W., Kimmel, C.B. & Walker, C. (1990) Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors. Neuron, 4, 867874.
  • Zeller, J., Schneider, V., Malayaman, S., Higashijima, S., Okamoto, H., Gui, J., Lin, S. & Granato, M. (2002) Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues. Dev. Biol., 252, 241256.