Get access

Day-length encoding through tonic photic effects in the retinorecipient SCN region

Authors

  • Lily Yan,

    1. Department of Psychology, Columbia University, New York, NY, USA
    Search for more papers by this author
    • *

      Present address: Department of Psychology & Neuroscience Program, 108 Giltner Hall, East Lansing, MI 48824, USA.

  • Rae Silver

    1. Department of Psychology, Columbia University, New York, NY, USA
    2. Department of Anatomy and Cell Biology, Columbia University, New York, NY, USA
    3. Department of Psychology, Barnard College of Columbia University, New York, NY, USA
    Search for more papers by this author

Dr L. Yan, *present address below.
E-mail: yanl@msu.edu

Abstract

The circadian clock in the suprachiasmatic nucleus (SCN) plays a critical role in seasonal processes by sensing ambient photoperiod. To explore how it measures day-length, we assessed the state of SCN oscillators using markers for neuronal activity (c-FOS) and the clock protein (PER1) in Syrian hamsters housed in long (LD, 16 : 8 h light : dark) vs. short days (SD, 8 : 16 h light : dark). During SD, there was no detectable phase dispersion across the rostrocaudal extent of the nucleus. In contrast, during LD, rhythms in the caudal SCN phase led those in the mid- and rostral SCN by 4–8 h and 8–12 h, respectively. Importantly, some neurons in the retinorecipient core SCN were unique in that they were FOS-positive during the dark phase in LD, but not SD. Transfer of LD animals to constant darkness or skeleton photoperiod revealed that dark-phase FOS expression depends on tonic light exposure rather than on intrinsic clock properties. By transferring animals from SD to LD, we next discovered that there are two separate populations of SCN cells, one responding to acute and the other to tonic light exposure. The results suggest that the seasonal encoding of day-length by the SCN entails reorganization of its constituent oscillators by a subgroup of neurons in the SCN core that respond to tonic photic cues.

Ancillary