SEARCH

SEARCH BY CITATION

Keywords:

  • cortical infarction;
  • mouse;
  • nestin;
  • neurosphere

Abstract

The CNS has the potential to marshal strong reparative mechanisms, including activation of endogenous neurogenesis, after a brain injury such as stroke. However, the response of neural stem/progenitor cells to stroke is poorly understood. Recently, neural stem/progenitor cells have been identified in the cerebral cortex, as well as previously recognized regions such as the subventricular or subgranular zones of the hippocampus, suggesting that a contribution of cortex-derived neural stem/progenitor cells may repair ischemic lesions of the cerebral cortex. In the present study, using a highly reproducible murine model of cortical infarction, we have found nestin-positive cells in the post-stroke cerebral cortex, but not in the non-ischemic cortex. Cells obtained from the ischemic core of the post-stroke cerebral cortex formed neurosphere-like cell clusters expressing nestin; such cells had the capacity for self-renewal and differentiated into electrophysiologically functional neurons, astrocytes and myelin-producing oligodendrocytes. Nestin-positive cells from the stroke-affected cortex migrated into the peri-infarct area and differentiated into glial cells in vivo. Although we could not detect differentiation of nestin-positive cells into neurons in vivo, our current observations indicate that endogenous neural stem/progenitors with the potential to become neurons can develop within post-stroke cerebral cortex.