SEARCH

SEARCH BY CITATION

Keywords:

  • Ca2+;
  • mitochondria;
  • neurotoxicity;
  • Parkinson’s disease;
  • rat

Abstract

Rotenone is a toxin used to generate animal models of Parkinson’s disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05–1 μm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm) and intracellular [Na+] (3.1 ± 0.6 mm) (all with 1 μm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm) Ca2+ response when baseline [Ca2+]i was increased by a ‘priming’ protocol that activated voltage-gated Ca2+ channels. There was also a positive correlation between ‘naturally’ occurring variations in baseline [Ca2+]i and the rotenone-induced [Ca2+]i rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K+ channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca2+]i rise by a small increase in baseline [Ca2+]i.