Get access

Neural cell adhesion molecule is required for stability of reinnervated neuromuscular junctions

Authors

  • Peter H. Chipman,

    1. Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia, Canada, B3H 1X5
    Search for more papers by this author
    • *

      P.H.C. and C.K.F. contributed equally to this work.

  • Colin K. Franz,

    1. Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia, Canada, B3H 1X5
    Search for more papers by this author
    • *

      P.H.C. and C.K.F. contributed equally to this work.

  • Alexandra Nelson,

    1. Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia, Canada, B3H 1X5
    Search for more papers by this author
  • Melitta Schachner,

    1. Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
    2. W.M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
    Search for more papers by this author
  • Victor F. Rafuse

    1. Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia, Canada, B3H 1X5
    Search for more papers by this author

Dr Victor F. Rafuse, as above.
E-mail: vrafuse@dal.ca

Abstract

Studies examining the etiology of motoneuron diseases usually focus on motoneuron death as the defining pathophysiology of the disease. However, impaired neuromuscular transmission and synapse withdrawal often precede cell death, raising the possibility that abnormalities in synaptic function contribute to disease onset. Although little is known about the mechanisms maintaining the synaptic integrity of neuromuscular junctions (NMJs), Drosophila studies suggest that Fasciclin II plays an important role. Inspired by these studies we used a reinnervation model of synaptogenesis to analyze neuromuscular function in mice lacking neural cell adhesion molecule (NCAM), the Fasciclin II vertebrate homolog. Our results showed that the recovery of contractile force was the same in wild-type and NCAM−/− mice at 1 month after nerve injury, indicating that endplates were appropriately reformed. This normality was only transient because the contractile force and myofiber number decreased at 3 months after injury in NCAM−/− mice. Both declined further 3 months later. Myofibers degenerated, not because motoneurons died but because synapses were withdrawn. Although neurotransmission was initially normal at reinnervated NCAM−/− NMJs, it was significantly compromised 3 months later. Interestingly, the selective ablation of NCAM from motoneurons, or muscle fibers, did not mimic the deficits observed in reinnervated NCAM−/− mice. Taken together, these results indicate that NCAM is required to maintain normal synaptic function at reinnervated NMJs, although its loss pre-synaptically or post-synaptically is not sufficient to induce synaptic destabilization. Consideration is given to the role of NCAM in terminal Schwann cells for maintaining synaptic integrity and how NCAM dysfunction may contribute to motoneuron disorders.

Ancillary