SEARCH

SEARCH BY CITATION

References

  • Abeles, M. & Goldstein, M.H. (1977) Quantification, smoothing, and confidence limits for single-units’ histograms. J. Neurosci. Methods, 5, 317325.
  • Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716723.
  • Archambeau, C. & Verleysen, M. (2007) Robust Bayesian clustering. Neural Netw., 20, 129138.
  • Attias, H. (1999) Inferring parameters and structure of latent variable models by variational Bayes. In Laskey, K.B. & Prade, H. (Eds), Proceedings of 15th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers, San Francisco, pp. 2130.
  • Bar-Gad, I., Ritov, Y., Vaadia, E. & Bergman, H. (2001) Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations. J. Neurosci. Methods, 107, 113.
  • Bishop, C.M. (2006) Pattern recognition and machine learning. Springer Science + Business Media, LLC, New York.
  • Brown, E.N., Kass, R.E. & Mitra, P.P. (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci., 7, 456461.
  • Buzsáki, G. (2004) Large-scale recording of neuronal ensembles. Nat. Neurosci., 7, 446451.
  • Celeux, G. & Govaert, G. (1992) A classification EM algorithm for clustering and two stochastic versions. Comput Stat Data Anal, 14, 315332.
  • Cohen, A., Daubechies, I. & Feauveau, J.C. (1992) Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math., 45, 485500.
  • Csicsvari, J., Hirase, H., Czurko, A. & Buzsáki, G. (1998) Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron, 21, 179189.
  • Daubechies, I. (1992) Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 61, SIAM ed., Cambridge Univ. Press, Cambridge.
  • Delescluse, M. & Pouzat, C. (2006) Efficient spike-sorting of multi-state neurons using inter-spike intervals information. J. Neurosci. Methods, 150, 1629.
  • Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977) Maximum-likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B, 39, 138.
  • Figueiredo, M. & Jain, A.K. (2000) Unsupervised selection and estimation of finite mixture models. Proceedings of the 15th International Conference on Pattern Recognition (ICPR2000), Vol. 2. Barcelona, pp. 8790.
  • Fynh, M., Hafing, T., Treves, A., Moser, M.B. & Moser, E.I. (2007) Hippocampal remapping and grid realignment in enthorhinal cortex. Nature, 466, 190194.
  • Görür, D., Rasmussen, C.E., Tolias, A.S., Sinz, F. & Logothetis, N.K. (2004) Modelling spikes with mixtures of factor analysers. Lect. Notes Comput. Sci., 3157, 391398.
  • Halata, E., Segev, R., Shapira, Y., Benveniste, M. & Ben-Jacob, E. (2000) Detections and sorting of neural spikes using wavelet packets. Phys. Rev. Lett., 85, 46374640.
  • Harr, A. (1910) Zur Theorie der orthogonalen Funktionensysteme. Math. Ann., 69, 331371.
  • Harris, K.D., Henze, D.A., Cscicsvari, J., Hirase, H. & Buzsáki, G. (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol., 84, 401414.
  • Hazan, L., Zugaro, M. & Buzsáki, G. (2006) Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Methods, 155, 207216.
  • Henze, D.A., Borhegyi, Z., Scicsvari, J., Mamiya, A., Harris, K.D. & Buzsáki, G. (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol., 84, 390400.
  • Hoaglin, D.C., Mosteller, F. & Tukey, J.W. (1983) Understanding robust and exploratory data analysis. Wiley-Interscience, Malden.
  • Katahira, K., Watanabe, K. & Okada, M. (2008) Deterministic annealing variant of variational Bayes method. J. Phys.: Conf. Ser., 95, 012015.
  • Lange, K.L., Little, R.J.A. & Taylor, J.M.G. (1989) Robust statistical modeling using t-distribution. J. Am. Stat. Assoc., 84, 881896.
  • Letelier, J.C. & Weber, P.P. (2000) Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Methods, 101, 93106.
  • Lewicki, M. (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Netw.-Comput. Neural Syst., 9, R53R78.
  • Mallat, S. (1998) A wavelet tour of signal processing. Academic Press, San Diego.
  • Nguyen, D., Frank, L. & Brown, E. (2003) An application of reversible-jump Markov chain Monte Carlo to spike classification of multi-unit extracellular recordings. Network, 14, 6182.
  • O’Keefe, J. & Recce, M.L. (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3, 317330.
  • Pazienti, A. & Gruen, S. (2006) Robustness of the significance of spike synchrony with respect to sorting errors. J. Comput. Neurosci., 21, 329342.
  • Peel, D. & McLachlan, G.J. (2000) Robust mixture modeling using the t-distribution. Stat. Comput., 33, 10651076.
  • Pouzat, C., Delescluse, M., Viot, P. & Diebold, J. (2004) Improved spike-sorting by modeling firing statistics and burst-dependent spike amplitude attenuation: a Markov chain Monte Carlo approach. J. Neurophysiol., 91, 29102928.
  • Quiroga, R.Q., Nadasady, Z. & Ben-Shaul, Y. (2004) Unsupervised spike sorting with wavelets and superparamagnetic clustering. Neural Comput., 16, 16611687.
  • Ripley, B.D. (1996) Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.
  • Saito, M. & Matsumoto, M. (2008a) SIMD-oriented fast Mersenne twister: a 128 bit pseudorandom number generator. In Keller, A., Heinrich, S. & Niederreiter, H. (Eds), Monte Carlo and Quasi Monte Carlo Methods 2006. Springer Verlag, Berlin, pp. 607610.
  • Saito, M. & Matsumoto, M.. (2008b) A uniform real random number generator obeying the IEEE 754 format using an affine transition. In Abstracts of 8th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC ‘08), p. 151. [The software is available at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html].
  • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Stat., 6, 461464.
  • Shoham, S., Fellows, M.R. & Normann, R.A. (2003) Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Methods, 127, 111122.
  • Student. (1908) The probable error of a mean. Biometrika, 6, 125.
  • Svensén, M. & Bishop, C.M. (2005) Robust Bayesian mixture modeling. Neurocomputing, 64, 235252.
  • Takahashi, S., Anzai, Y. & Sakurai, Y. (2003) Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. J. Neurophysiol., 89, 22452258.
  • Takekawa, T. & Fukai, T. (2009) A novel view of the variational Bayesian clustering. Neurocomputing, 72, 33663369.
  • Takekawa, T., Isomura, Y. & Fukai, T. (2008) Accurate spike sorting of multiunit recording data based on the robust variational Bayesian clustering. Soc. Neurosci. Abstr., 38, 673613.
  • Ueda, N. & Nakano, R. (1998) Deterministic annealing EM algorithm. Neural Netw., 11, 271282.
  • Wallace, C. & Freeman, P. (1987) Estimation and inference via compact coding. J. R. Stat. Soc. B, 49, 241252.
  • Wilson, M.A. & McNaughton, B.L. (1993) Dynamics of the hippocampal ensemble code for space. Science, 261, 10551058.
  • Wood, F. & Black, M.J. (2008) A nonparametric Bayesian alternative to spike sorting. J. Neurosci. Methods, 173, 112.
  • Wood, F., Fellows, M., Donoghue, J.P. & Black, M.J. (2004) Automatic spike sorting for neural decoding. Proc 26th Ann Int Conf IEEE EMBS, San Francisco, 40094012.