• Alzheimer’s disease;
  • classical conditioning;
  • eyeblink;
  • fear conditioning;
  • spatial learning


In the last few years it has become clear that AMPA-type glutamate neurotransmitter receptors are rapidly transported into and out of synapses to strengthen or weaken their function. The remarkable dynamics of AMPA receptor (AMPAR) synaptic localization provides a compelling mechanism for understanding the cellular basis of learning and memory, as well as disease states involving cognitive dysfunction. Here, we summarize the evidence for AMPAR trafficking as a mechanism underlying a variety of learned responses derived from both behavioral and cellular studies. Evidence is also reviewed supporting synaptic dysfunction related to impaired AMPAR trafficking as a mechanism underlying learning and memory deficits in Alzheimer’s disease. We conclude that emerging data support the concept of multistage AMPAR trafficking during learning and that a broad approach to include examination of all of the AMPAR subunits will provide a more complete view of the mechanisms underlying multiple forms of learning.