• chloride;
  • GABA;
  • GABAA receptor;
  • immunogold


The neuron-specific potassium-chloride cotransporter 2 (KCC2) plays a crucial role in adjusting intracellular Cl concentrations. The lack of KCC2 in the plasma membrane of the axon initial segment (AIS) of pyramidal cells contributes to variable reversal potentials for perisomatic γ-aminobutyric acid (GABA)A receptor-mediated postsynaptic potentials, but the distribution of KCC2 in pyramidal dendrites remains to be established. We applied high-resolution pre-embedding immunolocalization to quantify KCC2 concentrations along dendritic, somatic and axonal regions of rat hippocampal principal cells. Confirming our results on neocortical pyramidal cells, membranes of AIS of CA1 pyramidal cells and dentate granule cells contained 6.4 ± 11.9% and 6.6 ± 14.1% of somatic KCC2 concentrations, respectively. Concentrations of KCC2 in basal dendritic shafts of stratum (str.) oriens were similar to somatic levels (109.2 ± 48.8%). Along apical dendritic shafts of CA1 pyramidal cells, the concentration of KCC2 showed a complex profile: normalized to somatic levels, the density of KCC2 was 124.5 ± 15.7%, 79 ± 12.4% and 98.2 ± 33.5% in the proximal and distal part of str. radiatum and in str. lacunosum moleculare, respectively. Dendritic spines of CA1 receiving excitatory inputs contained 39.9 ± 8.5% of KCC2 concentration measured in shafts of the same dendritic segments targeted by GABAergic inputs. Dendrites of dentate granule cells showed higher KCC2 concentration compared with the soma (148.9 ± 54%), but no concentration gradient was detected between proximal and distal dendrites. In conclusion, the density of KCC2 in hippocampal principal cells increases along the axo-somato-dendritic axis with cell type-specific distribution profiles within the dendritic tree.