SEARCH

SEARCH BY CITATION

References

  • Ambroggi, F., Ishikawa, A., Fields, H.L. & Nicola, S.M. (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron, 59, 648661.
  • Aragona, B.J., Cleaveland, N.A., Stuber, G.D., Day, J.J., Carelli, R.M. & Wightman, R.M. (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J. Neurosci., 28, 88218831.
  • Arroyo, M., Markou, A., Robbins, T.W. & Everitt, B.J. (1998) Acquisition, maintenance and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and continuous access to cocaine. Psychopharmacology (Berl), 140, 331344.
  • Balleine, B.W., Killcross, A.S. & Dickinson, A. (2003) The effect of lesions of the basolateral amygdala on instrumental conditioning. J. Neurosci., 23, 666675.
  • Blundell, P., Hall, G. & Killcross, S. (2001) Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. J. Neurosci., 21, 90189026.
  • de Borchgrave, R., Rawlins, J.N., Dickinson, A. & Balleine, B.W. (2002) Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats. Exp. Brain Res., 144, 5068.
  • Bray, S., Rangel, A., Shimojo, S., Balleine, B. & O’Doherty, J.P. (2008) The neural mechanisms underlying the influence of pavlovian cues on human decision making. J. Neurosci., 28, 58615866.
  • Brog, J.S., Salyapongse, A., Deutch, A.Y. & Zahm, D.S. (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol., 338, 255278.
  • Calu, D.J., Stalnaker, T.A., Franz, T.M., Singh, T., Shaham, Y. & Schoenbaum, G. (2007) Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn. Mem., 14, 325328.
  • Cardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. (2002a) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev., 26, 321352.
  • Cardinal, R.N., Parkinson, J.A., Lachenal, G., Halkerston, K.M., Rudarakanchana, N., Hall, J., Morrison, C.H., Howes, S.R., Robbins, T.W. & Everitt, B.J. (2002b) Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci., 116, 553567.
  • Carelli, R.M. & Deadwyler, S.A. (1994) A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. J. Neurosci., 14, 77357746.
  • Carelli, R.M. & Wondolowski, J. (2003) Selective encoding of cocaine versus natural rewards by nucleus accumbens neurons is not related to chronic drug exposure. J. Neurosci., 23, 1121411223.
  • Carelli, R.M., Ijames, S.G. & Crumling, A.J. (2000) Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. J. Neurosci., 20, 42554266.
  • Corbit, L.H. & Balleine, B.W. (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J. Neurosci., 25, 962970.
  • Corbit, L.H. & Janak, P.H. (2007) Inactivation of the lateral but not medial dorsal striatum eliminates the excitatory impact of Pavlovian stimuli on instrumental responding. J. Neurosci., 27, 1397713981.
  • Corbit, L.H., Muir, J.L. & Balleine, B.W. (2001) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J. Neurosci., 21, 32513260.
  • Corbit, L.H., Janak, P.H. & Balleine, B.W. (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur. J. Neurosci., 26, 31413149.
  • Day, J.J., Wheeler, R.A., Roitman, M.F. & Carelli, R.M. (2006) Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur. J. Neurosci., 23, 13411351.
  • Dickinson, A., Smith, J. & Mirenowicz, J. (2000) Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav. Neurosci., 114, 468483.
  • Estes, W.K. (1948) Discriminative conditioning; effects of a Pavlovian conditioned stimulus upon a subsequently established operant response. J. Exp. Psychol., 38, 173177.
  • Everitt, B.J., Dickinson, A. & Robbins, T.W. (2001) The neuropsychological basis of addictive behaviour. Brain Res. Rev., 36, 129138.
  • Fuchs, R.A., Evans, K.A., Parker, M.C. & See, R.E. (2004) Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl), 176, 459465.
  • Gallagher, M., Graham, P.W. & Holland, P.C. (1990) The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J. Neurosci., 10, 19061911.
  • Grimm, J.W., Shaham, Y. & Hope, B.T. (2002) Effect of cocaine and sucrose withdrawal period on extinction behavior, cue-induced reinstatement, and protein levels of the dopamine transporter and tyrosine hydroxylase in limbic and cortical areas in rats. Behav. Pharmacol., 13, 379388.
  • Hall, J., Parkinson, J.A., Connor, T.M., Dickinson, A. & Everitt, B.J. (2001) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci., 13, 19841992.
  • Haney, R.Z., Calu, D.J., Takahashi, Y.K., Hughes, B.W. & Schoenbaum, G. (2010) Inactivation of the central but not the basolateral nucleus of the amygdala disrupts learning in response to overexpectation of reward. J. Neurosci., 30, 29112917.
  • Hatfield, T., Han, J.S., Conley, M., Gallagher, M. & Holland, P. (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci., 16, 52565265.
  • Heimer, L., Zahm, D.S., Churchill, L., Kalivas, P.W. & Wohltmann, C. (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience, 41, 89125.
  • Holland, P.C. (2004) Relations between Pavlovian-instrumental transfer and reinforcer devaluation. J. Exp. Psychol. Anim. Behav. Process., 30, 104117.
  • Holland, P.C. & Gallagher, M. (2003) Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur. J. Neurosci., 17, 16801694.
  • Holland, P.C. & Petrovich, G.D. (2005) A neural systems analysis of the potentiation of feeding by conditioned stimuli. Physiol. Behav., 86, 747761.
  • Holland, P.C. & Rescorla, R.A. (1975) Second-order conditioning with food unconditioned stimulus. J. Comp. Physiol. Psychol., 88, 459467.
  • Hollander, J.A. & Carelli, R.M. (2005) Abstinence from cocaine self-administration heightens neural encoding of goal-directed behaviors in the accumbens. Neuropsychopharmacology, 30, 14641474.
  • Hollander, J.A. & Carelli, R.M. (2007) Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J. Neurosci., 27, 35353539.
  • Homayoun, H. & Moghaddam, B. (2009) Differential representation of Pavlovian-instrumental transfer by prefrontal cortex subregions and striatum. Eur. J. Neurosci., 29, 14611476.
  • Hyde, T.S. (1976) The effect of Pavlovian stimuli on the acquisition of a new response. Learn Motiv., 7, 223239.
  • Jones, J.L., Wheeler, R.A. & Carelli, R.M. (2008) Behavioral responding and nucleus accumbens cell firing are unaltered following periods of abstinence from sucrose. Synapse, 62, 219228.
  • Jones, J.L., Day, J.J., Wheeler, R.A. & Carelli, R.M. (2010) The basolateral amygdala differentially regulates conditioned neural responses within the nucleus accumbens core and shell. Neuroscience, 169, 11861198.
  • Kalivas, P.W. & McFarland, K. (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl), 168, 4456.
  • Lex, A. & Hauber, W. (2008) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn. Mem., 15, 483491.
  • Lovibond, P.F. (1983) Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J. Exp. Psychol. Anim. Behav. Process., 9, 225247.
  • Murschall, A. & Hauber, W. (2006) Inactivation of the ventral tegmental area abolished the general excitatory influence of Pavlovian cues on instrumental performance. Learn. Mem., 13, 123126.
  • Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci., 19, 24012411.
  • Parkinson, J.A., Cardinal, R.N. & Everitt, B.J. (2000a) Limbic cortical-ventral striatal systems underlying appetitive conditioning. Prog. Brain Res., 126, 263285.
  • Parkinson, J.A., Robbins, T.W. & Everitt, B.J. (2000b) Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci., 12, 405413.
  • Pecina, S., Schulkin, J. & Berridge, K.C. (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol., 4, 8.
  • Pickens, C.L., Saddoris, M.P., Setlow, B., Gallagher, M., Holland, P.C. & Schoenbaum, G. (2003) Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J. Neurosci., 23, 1107811084.
  • Ranaldi, R., Egan, J., Kest, K., Fein, M. & Delamater, A.R. (2009) Repeated heroin in rats produces locomotor sensitization and enhances appetitive Pavlovian and instrumental learning involving food reward. Pharmacol. Biochem. Behav., 91, 351357.
  • Rescorla, R. (1994) Control of instrumental performance by Pavlovian and instrumental stimuli. J. Exp. Psychol. Anim. Behav. Process., 20, 4450.
  • Rescorla, R.A. & Solomon, R.L. (1967) Two-process learning theory: relationships between Pavlovian conditioning and instrumental learning. Psychol. Rev., 74, 151182.
  • Robbins, T.W. & Everitt, B.J. (2002) Limbic-striatal memory systems and drug addiction. Neurobiol. Learn. Mem., 78, 625636.
  • Roesch, M.R., Takahashi, Y., Gugsa, N., Bissonette, G.B. & Schoenbaum, G. (2007) Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J. Neurosci., 27, 245250.
  • Roitman, M.F., Wheeler, R.A. & Carelli, R.M. (2005) Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron, 45, 587597.
  • Saddoris, M.P., Cameron, C.M., Briley, J.D. & Carelli, R.M. (2010) Long-term exposure to cocaine self-administration disrupts the behavioral and neural correlates of Pavlovian second-order conditioning in the nucleus accumbens of rats. In: Society for Neuroscience Annual Meeting. San Diego, CA.
  • Schoenbaum, G. & Setlow, B. (2003) Lesions of nucleus accumbens disrupt learning about aversive outcomes. J. Neurosci., 23, 98339841.
  • Schoenbaum, G. & Setlow, B. (2005) Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal-amygdalar function. Cereb. Cortex, 15, 11621169.
  • Schoenbaum, G., Chiba, A. & Gallagher, M. (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat. Neurosci., 1, 155159.
  • Schoenbaum, G., Setlow, B., Saddoris, M.P. & Gallagher, M. (2003a) Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron, 39, 855867.
  • Schoenbaum, G., Setlow, B., Nugent, S.L., Saddoris, M.P. & Gallagher, M. (2003b) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn. Mem., 10, 129140.
  • Schoenbaum, G., Saddoris, M.P., Ramus, S.J., Shaham, Y. & Setlow, B. (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur. J. Neurosci., 19, 19972002.
  • Setlow, B., Holland, P.C. & Gallagher, M. (2002) Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive pavlovian second-order conditioned responses. Behav. Neurosci., 116, 267275.
  • Setlow, B., Schoenbaum, G. & Gallagher, M. (2003) Neural encoding in ventral striatum during olfactory discrimination learning. Neuron, 38, 625636.
  • Shiflett, M.W. & Balleine, B.W. (2010) At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur. J. Neurosci., 32, 17351743.
  • Wyvell, C.L. & Berridge, K.C. (2000) Intra-accumbens amphetamine increases the conditioned incentive salience for sucrose reward: enhancement of reward wanting without enhanced liking or response reinforcement. J. Neurosci., 20, 81228130.
  • Wyvell, C.L. & Berridge, K.C. (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J. Neurosci., 21, 78317840.