SEARCH

SEARCH BY CITATION

Keywords:

  • anxiety;
  • bred High Responder (bHR);
  • bred Low Responder (bLR);
  • hippocampus;
  • microarray

Abstract

Innate differences in human temperament strongly influence how individuals cope with stress and also predispose towards specific types of psychopathology. The present study examines the developing brain in an animal model of temperamental differences to examine how altered neurodevelopment may engender differences in emotional reactivity that are stable throughout the animal’s life. We utilize selectively-bred High Responder (bHR) and Low Responder (bLR) rats that exhibit dramatic emotional behavior differences, with bHRs exhibiting exaggerated novelty-exploration, aggression, impulsivity and drug self-administration, and bLRs showing marked behavioral inhibition and exaggerated anxiety-like and depressive-like behavior. Using Affymetrix microarrays, we assessed bLR and bHR gene expression in the developing brain on postnatal days (P)7, 14 and 21, focusing on the hippocampus and nucleus accumbens, two regions related to emotionality and known to differ in adult bLR and bHR rats. We found dramatic gene expression differences between bLR and bHR in the P7 and P14 hippocampus, with minimal differences in the nucleus accumbens. Some of the most profound differences involved genes critical for neurodevelopment and synaptogenesis. Stereological studies evaluated hippocampal structure in developing bHR and bLR pups, revealing enhanced hippocampal volume and cell proliferation in bLR animals. Finally, behavioral studies showed that the characteristic bHR and bLR behavioral phenotypes emerge very early in life, with exploratory differences apparent at P16 and anxiety differences present by P25. Together these data point to specific brain regions and critical periods when the bHR and bLR phenotypes begin to diverge, which may eventually allow us to test possible therapeutic interventions to normalize extreme phenotypes (e.g. the anxiety-prone nature of bLRs or drug addiction proclivity of bHRs).