Get access

Social experience affects neuronal responses to male calls in adult female zebra finches


Catherine Del Negro, as above.


Plasticity studies have consistently shown that behavioural relevance can change the neural representation of sounds in the auditory system, but what occurs in the context of natural acoustic communication where significance could be acquired through social interaction remains to be explored. The zebra finch, a highly social songbird species that forms lifelong pair bonds and uses a vocalization, the distance call, to identify its mate, offers an opportunity to address this issue. Here, we recorded spiking activity in females while presenting distance calls that differed in their degree of familiarity: calls produced by the mate, by a familiar male, or by an unfamiliar male. We focused on the caudomedial nidopallium (NCM), a secondary auditory forebrain region. Both the mate’s call and the familiar call evoked responses that differed in magnitude from responses to the unfamiliar call. This distinction between responses was seen both in single unit recordings from anesthetized females and in multiunit recordings from awake freely moving females. In contrast, control females that had not heard them previously displayed responses of similar magnitudes to all three calls. In addition, more cells showed highly selective responses in mated than in control females, suggesting that experience-dependent plasticity in call-evoked responses resulted in enhanced discrimination of auditory stimuli. Our results as a whole demonstrate major changes in the representation of natural vocalizations in the NCM within the context of individual recognition. The functional properties of NCM neurons may thus change continuously to adapt to the social environment.