The extracellular matrix and diffusion barriers in focal cortical dysplasias

Authors

  • Josef Zamecnik,

    1. Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, 150 06 Prague, Czech Republic
    Search for more papers by this author
  • Ales Homola,

    1. Department of Neuroscience and Center for Cell Therapy and Tissue Repair, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
    2. Department of Neuroscience, Institute of Experimental Medicine, AS CR, Prague, Czech Republic
    Search for more papers by this author
  • Michal Cicanic,

    1. Department of Neuroscience and Center for Cell Therapy and Tissue Repair, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
    2. Department of Neuroscience, Institute of Experimental Medicine, AS CR, Prague, Czech Republic
    Search for more papers by this author
  • Klara Kuncova,

    1. Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, 150 06 Prague, Czech Republic
    Search for more papers by this author
  • Petr Marusic,

    1. Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
    Search for more papers by this author
  • Pavel Krsek,

    1. Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
    Search for more papers by this author
  • Eva Sykova,

    1. Department of Neuroscience and Center for Cell Therapy and Tissue Repair, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
    2. Department of Neuroscience, Institute of Experimental Medicine, AS CR, Prague, Czech Republic
    Search for more papers by this author
  • Lydia Vargova

    1. Department of Neuroscience and Center for Cell Therapy and Tissue Repair, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
    2. Department of Neuroscience, Institute of Experimental Medicine, AS CR, Prague, Czech Republic
    Search for more papers by this author

Josef Zamecnik, MD, PhD, as above.
E-mail: josef.zamecnik@lfmotol.cuni.cz

Abstract

Focal cortical dysplasias (FCDs) of the brain are recognized as a frequent cause of intractable epilepsy. To contribute to the current understanding of the mechanisms of epileptogenesis in FCD, our study provides evidence that not only cellular alterations and synaptic transmission, but also changed diffusion properties of the extracellular space (ECS), induced by modified extracellular matrix (ECM) composition and astrogliosis, might be involved in the generation or spread of seizures in FCD. The composition of the ECM in FCD and non-malformed cortex (in 163 samples from 62 patients) was analyzed immunohistochemically and correlated with the corresponding ECS diffusion parameter values determined with the real-time iontophoretic method in freshly resected cortex (i.e. the ECS volume fraction and the geometrical factor tortuosity, describing the hindrances to diffusion in the ECS). The ECS in FCD was shown to differ from that in non-malformed cortex, mainly by the increased accumulation of certain ECM molecules (tenascin R, tenascin C, and versican) or by their reduced expression (brevican), and by the presence of an increased number of astrocytic processes. The consequent increase of ECS diffusion barriers observed in both FCD type I and II (and, at the same time, the enlargement of the ECS volume in FCD type II) may alter the diffusion of neuroactive substances through the ECS, which mediates one of the important modes of intercellular communication in the brain – extrasynaptic volume transmission. Thus, the changed ECM composition and altered ECS diffusion properties might represent additional factors contributing to epileptogenicity in FCD.

Ancillary