• Arc/Arg3.1;
  • catFISH;
  • fear conditioning;
  • mouse;
  • reconsolidation


Neural activity and de novo protein synthesis during a rest period following memory retrieval in the amygdala is necessary for stabilization of reactivated fear memory. Arc/Arg3.1 (Arc) expression is regulated by neural activity and is a critical protein for memory reconsolidation. However, it remains unclear whether memory retrieval alters Arc transcription during subsequent rest. In this study, the populations of mouse lateral amygdala neurons that transcribe Arc during memory retrieval and at rest were detected using Arc cellular compartment analysis of temporal activity by fluorescence in situ hybridization (Arc catFISH). Results demonstrated that memory retrieval alters the composition of neuronal populations, which activate Arc transcription during subsequent rest. Approximately 50% of neurons that transcribe Arc at subsequent rest, transcribed Arc during memory retrieval, whereas only approximately 10% of neurons that transcribed Arc during a rest period prior to memory retrieval transcribe Arc during memory retrieval. In contrast, re-exposure to the chamber induced less preferential Arc transcription in latent inhibited mice that received shocks but recalled less conditioned fear. Taken together, these findings indicate that neuronal subpopulations activated during fear memory retrieval preferentially transcribe Arc during subsequent rest in the lateral amygdala. This preferential Arc transcription may contribute to memory reconsolidation.