The C : N : P stoichiometry of autotrophs – theory and observations


  • Göran I. Ågren

    1. Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, PO Box 7072, SE-750 07 Uppsala, Sweden
    Search for more papers by this author



Evolution has set biochemical constraints on the chemical composition of living organisms. These constraints seem to lead to increases in N : C and P : C ratios with increasing relative growth rate for all types of organisms. The N : P ratio also seems to decrease with relative growth rate for heterotrophs whereas autotrophs may show a more complex behaviour. Here I will show that, from biochemical considerations, N : C should increase linearly and P : C quadratically with relative growth rate in autotrophs with the consequence that N : P increases at low relative growth rates, passes a maximum and then decreases at high relative growth rates. These predictions are verified against observations for a freshwater alga (Selenastrum minutum) and a tree seedling (Betula pendula). Changes in temperature, light or other factors that affect the growth rate of autotrophs interact with nutrient supply in such a way that there are no simple rules for as to how N : P will change.