SEARCH

SEARCH BY CITATION

References

  • Andalo, C., Goldringer, I. & Godelle, B. (2001). Inter- and intragenotypic competition under elevated carbon dioxide in Arabidopsis thaliana. Ecology, 82, 157164.
  • Bazzaz, F.A. (1990) The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst., 21, 167196.
  • Bazzaz, F.A., Jasienski, M., Thomas, S.C. & Wayne, P. (1995). Microevolutionary responses in experimental populations of plants to CO2-enriched environments: parallel results from two model systems. Proc. Nat. Acad. Sci. USA, 92, 81618165.
  • Beerling, D.J. & Royer, D.L. (2002). Reading a CO2 signal from fossil stomata. New Phytol., 153, 387397.
  • Beerling, D.J. & Woodward, F.I. (1997). Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Bot. J. Linn. Soc., 124, 137153.
  • Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A. & Tooley, M.J. (1993). Stomatal density responds to the glacial cycle of environmental change. Proc. R. Soc. Lond. B Biol. Sci., 251, 133138.
  • Beerling, D.J., Osborne, C.P. & Chaloner, W.G. (2001). Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature, 410, 352354.
  • Berner, R.A. (2003). The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426, 323326.
  • Bone, E. & Farres, A. (2001). Trends and rates of microevolution in plants. Genetica, 112, 165182.
  • Bray, E.A. (2002). Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarry and differential expression data. Ann. Bot., 89, 803811.
  • Bunce, J. (1992). Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant Cell Environ., 15, 541549.
  • Case, A.L., Curtis, P.S. & Snow, A.A. (1998). Heritable variation in stomatal responses to elevated CO2 in wild radish, Raphanus raphanistrum (Brassicaceae). Am. J. Bot., 85, 253258.
  • Cerling, T.E., Ehleringer, J.R. & Harris, J.M. (1998). Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci., 353, 159171.
  • Cook, A.C., Tissue, D.T., Roberts, S.W. & Oechel, W.C. (1998). Effects of long-term elevated [CO2] from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant Cell Environ., 21, 417425.
  • Cowling, S.A. & Sage, R.F. (1998). Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ., 21, 427435.
  • Curtis, P.S. & Wang, X. (1998). A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113, 299313.
  • Curtis, P.S., Snow, A.A. & Miller, A.S. (1994). Genotype-specific effects of elevated CO2 on fecundity in wild radish (Raphanus raphanistrum). Oecologia, 97, 100105.
  • Curtis, P.S., Klus, D.J., Kalisz, S. & Tonsor, S.J. (1996). Intraspecific variation in CO2 responses in Raphanus raphanistrum and Plantago lanceolata: assessing the potential for evolutionary change with rising atmospheric CO2. In: Carbon Dioxide, Populations, and Communities (eds Körner, C. & Bazzaz, F.A. ). Academic Press, San Diego, pp. 1322.
  • DeLucia, E.H., Hamilton, J.G., Naidu, S.L., Thomas, R.B., Andrews, J.A., Finzi, A. et al. (1999). Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, 284, 11771179.
  • Dippery, J.K., Tissue, D.T., Thomas, R.B. & Strain, B.R. (1995). Effects of low and elevated CO2 on C3 and C4 annuals. I. Growth and biomass allocation. Oecologia, 101, 1320.
  • Dudley, S.A. (1996). The response to differing selection on plant physiological traits: Evidence for local adaptation. Evolution, 50, 103110.
  • Dudley, S.A. & Schmitt, J. (1996). Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat., 147, 445465.
  • Ehleringer, J.R., Cerling, T.E. & Helliker, B.R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112, 285299.
  • Ehleringer, J.R., Cerling, T.E. & Dearing, M.D. (2002). Atmospheric CO2 as a global change driver influencing plant-animal interactions. Integ. Comp. Biol., 42, 424430.
  • Etterson, J.R. & Shaw, R.G. (2001). Constraint to adaptive evolution in response to global warming. Science, 294, 151154.
  • Falconer, D.S. & Mackay, T.F.C. (1996). Introduction to quantitative genetics. Prentice Hall, London.
  • Farnsworth, E.J. & Bazzaz, F.A. (1995). Inter- and intra-generic differences in growth, reproduction, and fitness of nine herbaceous annual species grown in elevated CO2 environments. Oecologia, 104, 454466.
  • Gilbert, P., Moreteau, B., David, J.R. & Scheiner, S.M. (1998). Describing the evolution of reaction norm shape: body pigmentation in Drosophila. Evolution 52, 15011506.
  • Goverde, M., Arnone, J.A. & Erhardt, A. (2002). Species-specific reactions to elevated CO2 and nutrient availability in four grass species. Basic Appl. Ecol., 3, 221227.
  • Gray, J.E., Holroyd, G.H., van der Lee, F.M., Bahrami, A.R., Sijmons, P.C., Woodward, F.I. et al. (2000). The HIC signalling pathway links CO2 perception to stomatal development. Nature, 408, 713716.
  • Griffin, K.L. & Seemann, J.R. (1996). Plants, CO2 and Photosynthesis in the 21st Century. Chem. Biol., 3, 245254.
  • Hetherington, A.M. & Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901908.
  • IPCC (2001). Climate Change 2001: synthesis report.In: A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Watson, R.T. & the core writing team). Cambridge University Press, Cambridge, 398p.
  • Jablonski, L.M., Wang, X. & Curtis, P.S. (2002). Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol., 156, 926.
  • Jaffrezic, F., Pletcher, S. (2000). Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. Genetics, 156, 913922.
  • Kelly, J.K. (1999a). Response to selection in partially self fertilizing populations. I. Selection on a single trait. Evolution, 53, 336349.
  • Kelly, J.K. (1999b). Response to selection in partially self fertilizing populations. II. Selection on multiple traits. Evolution, 53, 350357.
  • Kingsolver, J., Gomulkiewicz, R. & Carter, P. (2001). Variation, selection and evolution of function-valued traits. Genetica, 112, 87104.
  • Kinugasa, T., Hikosaka, K. & Hirose, T. (2003). Reproductive allocation of an annual, Xanthium canadense, at an elevated carbon dioxide concentration. Oecologia, 137, 19.
  • Kirkpatrick, M., Lofsvold, D. & Bulmer, M. (1990). Analysis of the inheritance, selection, and evolution of growth trajectories. Genetics 124: 979993.
  • Kirkpatrick, M., Hill, W. & Thompson, R. (1994). Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy-cattle. Genet. Res., 64, 5769.
  • Klus, D.J., Kalisz, S., Curtis, P.S., Teeri, J.A. & Tonsor, S.J. (2001). Family- and population-level responses to atmospheric CO2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago Lanceloata (Plantaginaceae). Am. J. Bot., 88, 10801087.
  • Knapp, A. & Medina, E. (1999). Success of C4 photosynthesis in the field: Lessons from communities dominated by C4 plants. In: C4 Plant Biology (eds Sage, R.F. & Monson, R.K.). Academic Press, San Diego, pp. 251283.
  • Koch, G.W. & Mooney, H.A. (1996). Responses of terrestrial ecosystems to elevated CO2: a synthesis and summary. In: Carbon Dioxide and Terrestrial Ecosystems (eds Koch, G.W. & Mooney, H.A.). Academic Press, San Diego, pp. 415429.
  • Kohut, R. (2003). The long-term effects of carbon dioxide on natural systems: issues and research needs. Environ. Int., 29, 171180.
  • LaDeau, S.L. & Clark, J.S. (2001). Rising CO2 levels and the fecundity of forest trees. Science, 292, 9598.
  • Lake, J.A., Woodward, F.I. & Quick, W.P. (2002). Long-distance CO2 signaling in plants. J. Exp. Bot., 53, 183193.
  • McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J. & White, K.S. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge University Press, New York.
  • McElwain, J.C. & Chaloner, W.G. (1995). Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Ann. Bot., 76, 389395.
  • Matsuyama, T., Tamaoki, M., Nakajima, N., Aono, M., Kubo, A., Moriya, S. et al. (2002). cDNA microarray assessment for ozone-stressed Arabidopsis thaliana. Environ. Pollut., 117, 191194.
  • Medlyn, B.E., Barton, C.V.M., Broadmeadow, M.S.J., Ceulemans, R., De Angelis, P., Forstreuter, M. et al. (2001). Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol., 149, 247264.
  • Meyer, K. & Hill, W.G. (1997). Estimation of genetic and phenotypic covariances functions for longitudinal or repeated records by restricted maximum likelihood. Livestock Prod. Sci. 47, 185200.
  • Moore, B.D., Cheng, S.-H., Sims, D. & Seemann, J.R. (1999). The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ., 22, 567582.
  • Norby, R.J. (1994). Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil, 165, 920.
  • Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.G. & Ceulemans, R. (1999). Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ., 22, 683714.
  • Norton, L.R., Firbank, L.G. & Watkinson, A.R. (1995). Ecotypic differentiation of response to enhanced CO2 and temperature levels in Arabidopsis thaliana. Oecologia, 104, 394396.
  • Ozturk, Z.N., Talamé, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N. et al. (2002). Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol. Biol., 48, 551573.
  • Pataki, D.E., Ellsworth, D.W., King, J.S., Leavitt, S.W., Lin, G., Pendall, E. et al. (2003). Tracing changes in ecosystem function under elevated CO2. Bioscience, 53, 805818.
  • Paul, M.J., Foyer, C.H. (2001). Sink regulation of photosynthesis. J. Exp. Bot., 52, 13831400.
  • Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I. et al. (1999). Climate and atmospheric history of the past420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.
  • Pigliucci, M. (1998). Ecological and evolutionary genetics of Arabidopsis. Trends Plant Sci., 3, 485489.
  • Polley, H.W., Johnson, H.B., Marino, B.D. & Mayeux, H.S. (1993). Increase in C3 plant water-use efficiency and biomass over Glacial to present CO2 concentrations. Nature, 361, 6164.
  • Polley, H.W., Johnson, H.B., Mayeux, H.S. & Malone, S.R. (1993). Physiology and growth of wheat across a subambient carbon dioxide gradient. Ann. Bot., 71, 347356.
  • Poorter, H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio, 104/105, 7797.
  • Potvin, C. & Tousignant, D. (1996). Evolutionary consequences of simulated global change: genetic adaptation or adaptive phenotypic plasticity. Oecologia, 108, 683693.
  • Pritchard, S.G., Rogers, H.H., Prior, S.A. & Peterson, C.M. (1999). Elevated CO2 and plant structure: a review. Global Change Biol., 5, 807837.
  • Putterill, J. (2001). Flowering in time: genes controlling photoperiodic flowering in Arabidopsis. Philos. Trans. R. Soc. Lond. B Biol. Sci., 356, 17611767.
  • Rolland, F., Moore, B. & Sheen, J. (2002). Sugar sensing and signaling in plants. Plant Cell, Supplement 2002, S185S205.
  • Sage, R.F. (1994). Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. Photosynth. Res., 39, 351368.
  • Sage, R.F. & Cowling, S.A. (1999). Implications of stress in low CO2 atmospheres of the past: Are today's plants too conservative for a high CO2 world? In: Carbon Dioxide and Environmental Stress (eds Luo, Y. & Mooney, H.A.). Academic Press, San Diego, pp. 289308.
  • Sage, R.F. & Kubien, D.S. (2003). Quo vadis C-4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res., 77, 209225.
  • Salanoubat, M., Lemcke, K., Rieger, M., Ansorge, W., Unseld, M., Fartmann, B. et al. (2000). Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature, 408, 820822.
  • Saurer, M., Cherubini, P., Bonani, G. & Siegwolf, R. (2003). Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiol., 23, 9971004.
  • Schlesinger, W.H. (1997). Biogeochemistry: An Analysis of Global Change, 2nd edn. Academic Press, New York.
  • Schlichting, C.D. & Pigliucci, M. (1995). Gene regulation, quantitative genetics and the evolution of reaction norms. Evol. Ecol., 9, 154168.
  • Schmid, B., Birrer, A. & Lavigne, C. (1996). Genetic variation in the response of plant populations to elevated CO2 in a nutrient-poor, calcareous grassland. In: Carbon Dioxide, Populations, and Communities (eds Körner, C. & Bazzaz, F.A.). Academic Press, San Diego, pp. 3150.
  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y. et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J., 31, 279292.
  • Simpson, G.G., Gendall, A.R. & Dean, C. (1999). When to switch to flowering. Annu. Rev. Cell Dev. Biol., 99, 519550.
  • Sims, D.A., Cheng, W.X., Luo, Y.Q. & Seemann, J.R. (1999). Photosynthetic acclimation to elevated CO2 in a sunflower canopy. J. Exp. Bot., 50, 645653.
  • Stitt, M. & Krapp, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ., 22, 583621.
  • Tabata, S., Kaneko, T., Nakamura, Y., Kotani, H., Kato, T., Asamizu, E. et al. (2000). Sequence and analysis of chromosome 5 of the plantArabidopsis thaliana. Nature, 408, 823826.
  • Thomas, S.C. & Jasienski, M. (1996). Genetic variability and the nature of microevolutionary responses to elevated CO2. In: Carbon Dioxide, Populations, and Communities (eds Körner, C. & Bazzaz, F.A.). Academic Press, San Diego, pp. 5181.
  • Tissue, D.T., Griffin, K.L., Thomas, R.B. & Strain, B.R. (1995). Effects of low and elevated CO2 on C3 and C4 annuals. II. Photosynthesis and leaf biochemistry. Oecologia, 101, 2128.
  • Tissue, D.T., Griffin, K.L., Ball, J.T. (1999). Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiol., 19, 221228.
  • Tousignant, D. & Potvin, C. (1996). Selective responses to global change: experimental results on Brassica juncea (L.) Czern. In: Carbon dioxide, Populations, and Communities (eds Körner, C. & Bazzaz, F.A.). Academic Press, New York, pp. 2330.
  • Van Der Kooij, T.A.W., De Kok, L.J. & Stulen, I. (2000). Intraspecific variation in the response of Arabidopsis thaliana lines to elevated atmospheric CO2. Phyton (Austria), 40, 125132.
  • Ward, J.K. & Strain, B.R. (1997). Effects of low and elevated CO2 partial pressure on growth and reproduction of Arabidopsis thaliana from different elevations. Plant Cell Environ., 20, 254260.
  • Ward, J.K. & Strain, B.R. (1999). Elevated CO2 studies: past, present and future. Tree Physiol., 19, 211220.
  • Ward, J.K., Tissue, D.T., Thomas, R.B. & Strain, B.R. (1999). Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biol., 5, 857867.
  • Ward, J.K., Antonovics, J., Thomas, R.B. & Strain, B.R. (2000). Is atmospheric CO2 a selective agent on model C3 annuals? Oecologia, 123, 330341.
  • Woodward, F.I. (1993). Plant responses to past concentrations of CO2. Vegetatio, 104/105, 145155.
  • Woodward, F.I., Lake, J.A. & Quick, W.P. (2002). Stomatal development and CO2: ecological consequences. New Phytol., 153, 477484.
  • Zhang, J. & Lechowicz, M.J. (1995). Responses to CO2 enrichment by two genotypes of Arabidopsis thaliana differing in their sensitivity to nutrient availability. Ann. Bot., 75, 491499.