SEARCH

SEARCH BY CITATION

References

  • Adams, W.T., Griffin, A.R. & Moran, G.F. (1992). Using paternity analysis to measure effective pollen dispersal in plant populations. Am. Nat., 140, 762780.
  • Anderson, D.J. & Hodum, P.J. (1993). Predator behavior favors clumped nesting in an oceanic seabird. Ecology, 74, 24622464.
  • Anholt, B.R., Werner, E. & Skelly, D.K. (2000). Effect of food and predators on the activity of four larval ranid frogs. Ecology, 81, 30593521.
  • Barnett, V. (1999). Comparative Statistical Inference, 3rd edn. John Wiley & Sons, Ltd, Chichester, UK.
  • Barrowman, N.J., Myers, R.A., Hilborn, R., Kehler, D.G. & Field, C.A. (2003). The variability among populations of coho salmon in the maximum reproductive rate and depensation. Ecol. Appl., 13, 784793.
  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philos. Trans., 53, 370418.
  • Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd edn. Springer-Verlag, New York, NY, USA.
  • Berger, J.O. (2003). Could Fisher, Jeffreys and Neyman have agreed on testing (with comments and rejoinder). Stat. Sci., 18, 132.
  • Berger, J.O. & Berry, D.A. (1988). Statistical analysis and the illustration of objectivity. Am. Sci., 76, 159165.
  • Blume, J.D. & Royall, R.M. (2003). Illustrating the law of large numbers (and confidence intervals). Am. Stat., 57, 5157.
  • Bolker, B.M., Pacala, S.W. & Neuhauser, C. (2003). Spatial dynamics in model plant communities: what do we really know? Am. Nat., 162, 135148.
  • Box, G.E.P. & Tiao, G.C. (1992). Bayesian Inference in Statistical Analysis. John Wiley & Sons, Inc., New York.
  • Brühl, C.A., Mohamed, V. & Linsenmair, K.E. (1999). Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. J. Trop. Ecol., 15, 265277.
  • Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Inference: A Practical Information-theoretic Approach, 2nd edn. Springer-Verlag, New York.
  • Calder, C., Lavine, M., Muller, P. & Clark, J.S. (2003). Incorporating multiple sources of stochasticity into dynamic population models. Ecology, 84, 13951402.
  • Carlin, B.P. & Louis, T.A. (2000). Bayes and Empirical Bayes Methods for Data Analysis, 2nd edn. Chapman & Hall/CRC Press, Boca Raton, FL.
  • Carpenter, S.R., Kitchell, J.F., Cottingham, K.L., Schindler, D.E., Christensen, D.L., Post, D.M. et al. (1996). Chlorophyll variability, nutrient input, and grazing: evidence from whole-lake experiments. Ecology, 77, 725735.
  • Chase, J.M. & Liebold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago, IL.
  • Chatfield, C. (1995). Model uncertainty, data mining and statistical inference (with discussion). J. R. Stat. Soc., A158, 419466.
  • Chib, S. & Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. Am. Stat., 49, 327335.
  • Claeskens, G. & Hjort, N.L. (2003). The focused information criterion. J. Am. Stat. Assoc., 98, 900945.
  • Clark, C.W. & Mangel, M. (1984). Foraging and flocking strategies: information in an uncertain environment. Am. Nat., 123, 626641.
  • Clark, J.S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. (1999). Seed dispersal near and far: patterns across temperate and tropical forests. Ecology, 80, 14751494.
  • Clark, J.S., Lewis, M., McLachlan, J.S. & HilleRisLambers, J. (2003a). Estimating population spread: what can we forecast and how well? Ecology, 84, 19791988.
  • Clark, J.S., Mohan, J., Dietze, M. & Ibanez, I. (2003b). Coexistence: how to identify trophic trade-offs. Ecology, 84, 1731.
  • Congdon, P. (2001). Bayesian Statistical Modeling. John Wiley & Sons, Ltd, Chichester, UK.
  • Cooper, A.B., Hilborn, R. & Unsworth, J.W. (2003). An approach for population assessment in the absence of abundance indices. Ecol. Appl., 13, 814828.
  • Cottingham, K.L. & Carpenter, S.R. (1998). Population, community, and ecosystem variates as ecological indicators: phytoplankton responses to whole-lake enrichment. Ecol. Appl., 8, 508530.
  • Cummings, C.L., Alexander, H.M., Snow, A.A., Rieseberg, L.H., Kim, M.J. & Culley, T.M. (2002). Fecundity selection in a sunflower crop-wild study: can ecological data predict crop allele changes? Ecol. Appl., 12, 16611671.
  • Damgaard, C. (1998). Plant competition experiments: testing hypotheses and estimating the probability of coexistence. Ecology, 79, 17601767.
  • Dennis, B. (1996). Discussion: should ecologists become Bayesians? Ecol. Appl., 6, 10951103.
  • Dennis, B. (2004). Statistics and the scientific method in ecology (with commentaries and rejoinder). In: The Nature of Scientific Evidence (eds Taper, M.L. & Lele, S.R.). University of Chicago Press, Chicago, IL (in press).
  • Dixon, P. & Ellison, A.M. (1996). Introduction: ecological applications of Bayesian inference. Ecol. Appl., 6, 10341035.
  • Dorazio, R.M. & Johnson, F.A. (2003). Bayesian inference and decision theory – a framework for decision making in natural resource management. Ecol. Appl., 13, 556563.
  • Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). J. R. Stat. Soc., B57, 4597.
  • Drechsler, M., Frank, K., Hanski, I., O'Hara, R.B. & Wissel, C. (2003). Ranking metapopulation extinction risk: from patterns in data to conservation management decisions. Ecol. Appl., 13, 990998.
  • Edwards, A.W.F. (1992). Likelihood. Johns Hopkins University Press, Baltimore, MD.
  • Efron, B. (1978). Controversies in the foundations of statistics. Am. Math. Monthly, 85, 231246.
  • Efron, B. (1986). Why isn't everyone a Bayesian? Am. Stat., 40, 111.
  • Ellison, A.M. (1996). An introduction to Bayesian inference for ecological research and environmental decision-making. Ecol. Appl., 6, 10361046.
  • Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. London, 222, 309368.
  • Fleishman, E., Nally, R.M. & Fay, J.P. (2003). Validation tests of predictive models of butterfly occurrence based on environmental variables. Conserv. Biol., 17, 806817.
  • Forcada, J. (2000). Can population surveys show if the Mediterranean monk seal colony at Cap Blanc is declining in abundance? J. Appl. Ecol., 37, 171181.
  • Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (1995). Bayesian Data Analysis. Chapman & Hall, London.
  • Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC Press, Boca Raton, FL.
  • van Gils, J.A., Schenk, I.W., Bos, O. & Piersma, T. (2003). Incompletely informed shorebirds that face a digestive constraint maximize net energy gain when exploiting patches. Am. Nat., 161, 777793.
  • Gotelli, N.J. & Arnett, A.E. (2000). Biogeographic effects of red fire ant invasion. Ecol. Lett., 3, 257261.
  • Gotelli, N.J. & Ellison, A.M. (2002a). Assembly rules for New England ant assemblages. Oikos, 99, 591599.
  • Gotelli, N.J. & Ellison, A.M. (2002b). Biogeography at a regional scale: determinants of ant species density in bogs and forests of New England. Ecology, 83, 16041609.
  • He, F., Zhou, J. & Zhu, H. (2003). Autologistic regression model for the distribution of vegetation. J. Agric. Biol. Environ. Stat., 8, 205222.
  • Hilborn, R. & Mangel, M. (1997). The Ecological Detective: Confronting Models with Data. Princeton University Press, Princeton, NJ.
  • Hjort, N.L. & Claeskens, G. (2003). Frequentist model average estimators. J. Am. Stat. Assoc., 98, 879889.
  • Hoeting, J.A., Madigan, D., Raftery, A.E. & Volinsky, C.T. (1999). Bayesian model averaging: a tutorial. Stat. Sci., 14, 382401.
  • Howson, C. & Urbach, P. (1993). Scientific Reasoning: The Bayesian Approach, 2nd edn. Open Court Publishing Company, Peru, IL.
  • Hubbard, R. & Byarri, M.J. (2003). Confusion over measures of evidence (P’s) vs. errors (α’s) in classical statistical testing (with discussion and rejoinder). Am. Stat., 57, 171182.
  • Huston, M.A. (1994). Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge University Press, New York.
  • IPCC (2001). Climate Change 2001: Synthesis Report. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  • Jeanne, R.L. (1979). A latitudinal gradient in rates of ant predation. Ecology, 60, 12111224.
  • Jeffreys, H. (1961). Theory of Probability, 3rd edn. Oxford University Press, Oxford, UK.
  • Karlin, S. (1968). Rate of approach to homozygosity for finite stochastic models with variable population size. Am. Nat., 102, 443455.
  • Kaspari, M., O'Donnell, S. & Kercher, J.R. (2000). Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am. Nat., 155, 280293.
  • Koops, M.A. & Abrahams, M.V. (2003). Integrating the roles of information and competitive ability on the spatial distribution of social foragers. Am. Nat., 161, 586600.
  • Layton, D.F. & Levine, R.A. (2003). How much does the far future matter? A hierarchical Bayesian analysis of the public's willingness to mitigate ecological impacts of climate change. J. Am. Stat. Assoc., 98, 533544.
  • Levine, L., Asmussen, M., Olvera, O., Powell, J.R., de la Rosa, M.E., Salceda, V.M. et al. (1980). Population genetics of Mexican Drosophila. V. A high rate of multiple insemination in a natural population of Drosophila pseduoobscura. Am. Nat., 116, 493503.
  • MacNally, R., Horrocks, G. & Pettifer, L. (2002). Experimental evidence for potential beneficial effects of fallen timber in forests. Ecol. Appl., 12, 15881594.
  • Madigan, D. & Raftery, A.E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Am. Stat. Assoc., 89, 15351546.
  • McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models, 2nd edn. Chapman & Hall, London.
  • O'Hara, R.B., Arjas, E., Toivonen, H. & Hanski, I. (2002). Bayesian analysis of metapopulation data. Ecology, 83, 24082415.
  • Olsson, O. & Holmgren, N.M.A. (1999). Gaining ecological information about Bayesian foragers through their behaviour. I. Models with predictions. Oikos, 87, 251263.
  • Oster, G. & Heinrich, B. (1976). Why do bumblebees major? A mathematical model. Ecol. Monogr., 46, 129133.
  • Pascual, M.A. & Hilborn, R. (1995). Conservation of harvested populations in fluctuating environments: the case of the Serengeti wildebeest. J. Appl. Ecol., 32, 468480.
  • Pearl, R. (1917). The probable error of a Mendelian class frequency. Am. Nat., 51, 144156.
  • Pearson, K. (1907). On the influence of past experience on future expectation. London, Edinburgh and Dublin Philos. Mag. J. Sci., 13 - Sixth Series, 365378.
  • Peterson, G.D., Carpenter, S.R. & Brock, W.A. (2003). Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology, 84, 14031411.
  • Platt, W.J., Beckage, B., Doren, R.F. & Slater, H.H. (2002). Interactions of large-scale disturbances: prior fire regimes and hurricane mortality of savannah pines. Ecology, 83, 15661572.
  • Pollak, E. (1974). The survival of a mutant gene and the maintenance of polymorphism in subdivided populations. Am. Nat., 108, 2028.
  • Popper, K.R. (1959). The Logic of Scientific Discovery. Hutchinson, London.
  • Raftery, A.E., Givens, G.H. & Zeh, J.E. (1995). Inference from a deterministic population dynamics model for bowhead whales (with comments and rejoinder). J. Am. Stat. Assoc., 90, 402430.
  • Reckhow, K.H. (1990). Bayesian inference in non-replicated ecological studies. Ecology, 71, 253259.
  • Schmidt, K.A., Goheen, J.R., Naumann, R., Ostfeld, R.S., Schauber, E.M. & Berkowitz, A. (2001). Experimental removal of strong and weak predators: mice and chipmunks preying on songbird nests. Ecology, 82, 29272936.
  • Shen, T.J., Chao, A. & Lin, C.F. (2003). Predicting the number of new species in further taxonomic sampling. Ecology, 84, 798804.
  • Sivia, D.S. (1996). Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford, UK.
  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). J. R. Stat. Soc. B, 64, 583639.
  • Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. (2003). WinBUGS version 1.4 User Manual. http://www.mrc-bsu.cam.ac.uk/bug (last accessed 10 April 2004).
  • Strong, D.R., Whipple, A.V., Child, A.L. & Dennis, B. (1999). Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology, 80, 27502761.
  • Ter Braak, C.J.F. & Etienne, R.S. (2003). Improved Bayesian analysis of metapopulation data with an application to a tree frog metapopulation. Ecology, 84, 231241.
  • Toivonen, H.T.T., Mannila, H., Korhola, A. & Olander, H. (2001). Applying Bayesian statistics to organism-based environmental reconstruction. Ecol. Appl., 11, 618630.
  • Valone, T.J. & Brown, J.S. (1989). Measuring patch assessment abilities of desert granivores. Ecology, 70, 18001810.
  • de Valpine, P. & Hastings, A. (2002). Fitting population models incorporating process noise and observation error. Ecol. Monogr., 72, 5776.
  • Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S-Plus, 4th edn. Springer-Verlag, New York.
  • Volinsky, C.T., Madigan, D., Raftery, A.E. & Kronmal, R.A. (1997). Bayesian model averaging in proportional hazard models: predicting the risk of a stroke. Appl. Stat., 46, 433448.
  • Wade, P.R. (2001). Bayesian methods in conservation biology. Conserv. Biol., 14, 13081316.
  • Walters, C.J. & Holling, C.S. (1990). Large-scale management experiments and learning by doing. Ecology, 71, 20602068.
  • White, G.C. & Burnham, K.P. (1999). Program MARK: survival estimation from populations of marked animals. Bird Study, 46 (Suppl.), 120138.
  • Wintle, B.A., McCarthy, M.A., Volinsky, C.T. & Kavanagh, R.P. (2003). The use of Bayesian model averaging to better represent uncertainty in ecological models. Conserv. Biol., 17, 15791590.
  • Wolfson, L.J., Kadane, J.B. & Small, M.J. (1996). Bayesian environmental policy decisions: two case studies. Ecol. Appl., 6, 10561066.