SEARCH

SEARCH BY CITATION

References

  • Ackerly, D.D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci., 164, S165S184.
  • Andelman, S.J. & Willig, M.R. (2002). Alternative configurations of conservation reserves for Paraguayan bats: considerations of spatial scale. Conserv. Biol., 16, 13521363.
  • Anderson, R.P., Peterson, A.T. & Gomez-Laverde, M. (2002). Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos, 98, 316.
  • Araújo, M.B. & Pearson, R.G. (2005). Equilibrium of species’ distributions with climate. Ecography, in press.
  • Araujo, M.B., Williams, P.H. & Fuller, R.J. (2002). Dynamics of extinction and the selection of nature reserves. Proc. R. Soc. Lond. B Biol. Sci., 269, 19711980.
  • Araújo, M.B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P.H. (2004). Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob. Change Biol., 10, 16181626.
  • Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005a). Validation of species-climate impact models under climate change. Glob. Change Biol., in press.
  • Araújo, M.B., Whittaker, R.J., Ladle, R. & Erhard, M. (2005b). Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr., in press.
  • Aspinall, R. (1992). An inductive modeling procedure based on Bayes Theorem for analysis of pattern in spatial data. Int. J. Geogr. Inf. Syst., 6, 105121.
  • Austin, M.P. (1971). Role of regression analysis in plant ecology. Proc. Ecol. Soc. Aust., 6, 6375.
  • Austin, M.P. (1992). Modelling the environmental niche of plants – implications for plant community response to elevated CO2 levels. Aust. J .Bot., 40, 615630.
  • Austin, M.P. (1998). An ecological perspective on biodiversity investigations: example from Australian eucalypt forests. Ann. Missouri Bot. Gard., 85, 217.
  • Austin, M.P. (2002). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model., 157, 101118.
  • Austin, M.P. & Gaywood, M.J. (1994). Current problems of environmental gradients and species response curves in relation to continuum theory. J. Veg. Sci., 5, 473482.
  • Austin, M.P., Nicholls, A.O. & Margules, C.R. (1990). Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecol. Monogr., 60, 161177.
  • Bakkenes, M., Alkemade, J.R.M., Ihle, F., Leemans, R. & Latour, J.B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob. Change Biol., 8, 390407.
  • Beerling, D.J., Huntley, B. & Bailey, J.P. (1995). Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surface. J. Veg. Sci., 6, 269282.
  • Bell, G. (2001). Neutral macroecology. Science, 293, 24132418.
  • Boone, R.B. & Krohn, W.B. (2002). Modeling tools and accuracy assessment. In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Samson, F., Haufler, J., Morrison, M., Raphael, M. & Wall, B.). Island Press, Covelo, California, pp. 265270.
  • Boyce, M.S., Vernier, P.R., Nielsen, S.E. & Schmiegelow, F.K.A. (2002). Evaluating resource selection functions. Ecol. Model., 157, 281300.
  • Brotons, L., Thuiller, W., Araujo, M.B. & Hirzel, A.H. (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27, 437448.
  • Brown, J.H., Stevens, G.C. & Kaufman, D.M. (1996). The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst., 27, 597623.
  • Busby, J.R. (1991). BIOCLIM – a bioclimate analysis and prediction system. In: Nature Conservation: Cost Effective Biological Surveys and Data Analysis (eds Margules, C.R. & Austin, M.P.). CSIRO, Melbourne, pp. 6468.
  • Cabeza, M., Araújo, M.B., Wilson, R.J., Thomas, C.D., Cowley, M.J.R. & Moilanen, A. (2004). Combining probabilities of occurrence with spatial reserve design. J. Appl. Ecol., 41, 252262.
  • Carey, P.D. (1996). DISPERSE: a cellular automaton for predicting the distribution of species in a changed climate. Glob. Ecol. Biogeogr. Lett., 5, 217226.
  • Carpenter, G., Gillison, A.N. & Winter, J. (1993). DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv., 2, 667680.
  • Chuine, I., Cambon, G. & Comtois, P. (2000). Scaling phenology from the local to the regional level: advances from species-specific phenological models. Glob. Change Biol., 6, 943952.
  • Collingham, Y.C. & Huntley, B. (2000). Impacts of habitat fragmentation and patch size upon migration rates. Ecol. Appl., 10, 131144.
  • Collingham, Y.C., Wadsworth, R.A., Huntley, B. & Hulme, P.E. (2000). Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent. J. Appl. Ecol., 37, 1327.
  • Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. & Wood, S. (1998). Making mistakes when predicting shifts in species range in response to global warming. Nature, 391, 783786.
  • De'Ath, G. (2002). Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83, 11051117.
  • Dullinger, S., Dirnbock, T. & Grabherr, G. (2004). Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J. Ecol., 92, 241252.
  • Elith, J. (2000). Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In: Quantitative Methods in Conservation Biology (eds Ferson, S. & Burgman, M.A.). Springer, New York, pp. 3958.
  • Elith, J. & Burgman, M.A. (2002). Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Raphael, M.G., Wall, W.A. & Samson, F.B.). Island Press, Covelo, CA, pp. 303314.
  • Engler, R., Guisan, A. & Rechsteiner, L. (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol., 41, 263274.
  • Ferrier, S. (1984). The status of the Rufous Scrub-Bird Atrichornis rufescens: habitat, geographical variation and abundance. PhD Thesis, University of New England, Armidale, Australia.
  • Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol., 51, 331363.
  • Ferrier, S., Drielsma, M., Manion, G. & Watson, G. (2002). Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales. II. Community-level modelling. Biodivers. Conserv., 11, 23092338.
  • Ferrier, S., Powell, G.V.N., Richardson, K.S., Manion, G., Overton, J.M., Allnut, T.F. et al. (2004). Mapping more of terrestrial biodiversity for global conservation assessment: a new approach to integrating disparate sources of biological and environmental data. Bioscience, 54, 11011109.
  • Fielding, A.H. (2002). What are the appropriate characteristics of an accuracy measure? In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B.). Island Press, Covelo, CA, pp. 271280.
  • Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog. Phys. Geogr., 19, 474499.
  • Friedman, J.H., Hastie, T. & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. Ann. Stat., 28, 337374.
  • Gelfand, A.E., Schmidt, A.M., Wu, S., Silander, J.A., Latimer, A. & Rebelo, A.G. (2005). Modelling species diversity through species level hierarchical modelling. J. R. Stat. Soc. C Appl. Stat., 54, 120.
  • Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A.T. (2004a). New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol., 19, 497503.
  • Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J. & Moritz, C. (2004b). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution, 58, 17811793.
  • Guisan, A. & Harrell, F.E. (2000). Ordinal response regression models in ecology. J. Veg. Sci., 11, 617626.
  • Guisan, A. & Theurillat, J.-P. (2000). Equilibrium modeling of alpine plant distribution: how far can we go? Phytocoenologia, 30, 353384.
  • Guisan, A. & Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. Ecol. Model., 135, 147186.
  • Guisan, A., Theurillat, J.P. & Kienast, F. (1998). Predicting the potential distribution of plant species in an Alpine environment. J. Veg. Sci., 9, 6574.
  • Guisan, A., Weiss, S.B. & Weiss, A.D. (1999). GLM versus CCA spatial modeling of plant distribution. Plant Ecol., 143, 107122.
  • Guisan, A., Edwards, J., Thomas, C. & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model., 157, 89100.
  • Hewitson, B. (2003). Developing perturbations for climate change impact assessments. EOS, 84, 337339.
  • Hijmans, R.J., Guarino, L., Cruz, M. & Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl., 127, 1519.
  • Hirzel, A. & Guisan, A. (2002). Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model., 157, 331341.
  • Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83, 20272036.
  • Hubbell, S.P. (2001). A Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.
  • Huntley, B., Cramer, W., Morgan, A.V., Prentice, I.C. & Allen, J.R.M. (1997). Predicting the response of terrestrial biota to future environmental changes. In: Past and Future Rapid Environmental Changes: the Spatial and Evolutionary Responses of Terrestrial Biota (eds Huntley, B., Cramer, W., Morgan, A.V., Prentice, I.C. & Allen, J.R.M.). Springer-Verlag, Berlin, pp. 487504.
  • Huntley, B., Green, R.E., Collingham, Y.C., Hill, J.K., Willis, S.G., Bartlein, P.J. et al. (2004). The performance of models relating species geographical distributions to climate is independent of trophic level. Ecol. Lett., 7, 417426.
  • Huston, M.A. (2002). Introductory essay: critical issues for improving predictions. In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B.). Island Press, Covelo, CA, pp. 721.
  • Iverson, L.R., Prasad, A. & Schwartz, M.K. (1999). Modeling potential future individual tree-species distributions in the eastern United States under a climate change scenario: a case study with Pinus virginiana. Ecol. Model., 115, 7793.
  • Iverson, L.R., Schwartz, M.W. & Prasad, A. (2004). How fast and far might tree species migrate in the eastern United States due to climate change? Glob. Ecol. Biogeogr., 13, 209219.
  • Jaberg, C. & Guisan, A. (2001). Modelling the distribution of bats in relation to landscape structure in a temperate mountain environment. J. Appl. Ecol., 38, 11691181.
  • Johnson, J.B. & Omland, K.S. (2004). Model selection in ecology and evolution. Trends Ecol. Evol., 19, 101108.
  • Kadmon, R., Farber, O. & Danin, A. (2003). A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl., 13, 853867.
  • Kearney, M. & Porter, W.P. (2004). Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology, 85, 31193131.
  • Keddy, P.A. (1992). Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci., 3, 157164.
  • Leathwick, J.R. (1998). Are New Zealand's Nothofagus species in equilibrium with their environment? J. Veg. Sci., 9, 719732.
  • Leathwick, J.R. & Austin, M.P. (2001). Competitive interactions between tree species in New Zealand's old-growth indigenous forests. Ecology, 82, 25602573.
  • Leathwick, J.R., Whitehead, D. & McLeod, M. (1996). Predicting changes in the composition of New Zealand's indigenous forests in response to global warming: a modelling approach. Environ. Softw., 11, 8190.
  • Lehmann, A., Overton, J.M. & Leathwick, J.R. (2002). GRASP: generalized regression analysis and spatial prediction. Ecol. Model., 157, 189207.
  • Leibold, M.A. (1995). The niche concept revisited: mechanistic models and community context. Ecology, 76, 13711382.
  • Lichstein, J.W., Simons, T.R., Shriner, S.A. & Franzreb, K.E. (2002). Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr., 72, 445463.
  • Mac Nally, R. (2002). Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers. Conserv., 11, 13971401.
  • Mackey, B.G. & Lindenmayer, D.B. (2001). Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr., 28, 11471166.
  • Manel, S., Williams, H.C. & Ormerod, S.J. (2001). Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol., 38, 921931.
  • Margules, C.R. & Austin, M.P. (1991). Nature Conservation: Cost Effective Biological Survey and Data Analysis. CSIRO, Canberra, Australia.
  • Midgley, G.F., Hannah, L., Millar, D., Thuiller, W. & Booth, A. (2003). Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol. Conserv., 112, 8797.
  • Moisen, G.G. & Frescino, T.S. (2002). Comparing five modelling techniques for predicting forest characteristics. Ecol. Model., 157, 209225.
  • Nix, H., McMahon, J. & Mackenzie, D. (1977). Potential areas of production and the future of pigeon pea and other grain legumes in Australia. In: The potential for pigeon pea in Australia. Proceedings of Pigeon Pea (Cajanus cajan (L.) Millsp.) Field Day (eds Wallis, E.S. & Whiteman, P.C.). University of Queensland, Queensland, Australia, pp. 5/15/12.
  • Pearce, J.L. & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model., 133, 225245.
  • Pearce, J. & Lindenmayer, D. (1998). Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern Australia. Restor. Ecol., 6, 238243.
  • Pearce, J.L., Venier, L.A., Ferrier, S. & McKenney, D.W. (2002). Measuring prediction uncertainty in models of species distribution. In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B.). Island Press, Covelo, CA, pp. 383397.
  • Pearson, R.G. & Dawson, T.E. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr., 12, 361372.
  • Pearson, R.G., Dawson, T.P., Berry, P.M. & Harrison, P.A. (2002). SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol. Model., 154, 289300.
  • Pearson, R.G., Dawson, T.E. & Liu, C. (2004). Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography, 27, 285298.
  • Peng, C.H. (2000). From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol. Model., 135, 3354.
  • Peters, R.H. (1991). A Critique for Ecology. Cambridge University Press, Cambridge, UK.
  • Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sánchez-Cordero, V., Soberon, J., Buddemeier, R.H. & Stockwell, D.R.B. (2002). Future projections for Mexican faunas under global climatic change scenarios. Nature, 416, 626629.
  • Peterson, A.T. (2003). Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol., 78, 419433.
  • Phillips, S.J., Dudik, M. & Schapire, R.E. (2005). Maximum entropy modeling of species geographic distributions. In: Twenty-first International Conference on Machine Learning, in press.
  • Pulliam, H.R. (2000). On the relationship between niche and distribution. Ecol. Lett., 3, 349361.
  • Raxworthy, C.J., Martinez-Meyer, E., Horning, N., Nussbaum, R.A., Schneider, G.E., Ortega-Huerta, M.A. & Peterson, A.T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837841.
  • Robertson, M.P., Villet, M.H. & Palmer, A.R. (2004). A fuzzy classification technique for predicting species’ distributions: application using invasive alien plants and indigenous insects. Divers. Distrib., 10, 461474.
  • Rushton, S.P., Ormerod, S.J. & Kerby, G. (2004). New paradigms for modelling species distributions? J. Appl. Ecol., 41, 193200.
  • Schwartz, M.W., Iverson, L.R. & Prasad, A. (2001). Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing. Ecosystems, 4, 568581.
  • Scott, J.M., Heglund, P.J., Haufler, J.B., Morrison, M., Raphael, M.G., Wall, W.B. et al. (2002). Predicting Species Occurrences: Issues of Accuracy and Scale. Island Press, Covelo, CA.
  • Segurado, P. & Araújo, M.B. (2004). An evaluation of methods for modelling species distributions. J. Biogeogr., 31, 15551568.
  • Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol., 19, 605611.
  • Stockwell, D. & Peters, D. (1999). The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci., 13, 143158.
  • Stockwell, D.R.B. & Peterson, A.T. (2002). Effects of sample size on accuracy of species distribution models. Ecol. Model., 148, 113.
  • Svenning, J.-C. & Skov, F. (2004). Limited filling of the potential range in European tree species. Ecol. Lett., 7, 565573.
  • Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C. et al. (2004). Extinction risk from climate change. Nature, 427, 145147.
  • Thuiller, W. (2003). BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol., 9, 13531362.
  • Thuiller, W. (2004). Patterns and uncertainties of species’ range shifts under climate change. Glob. Change Biol., 10, 20202027.
  • Thuiller, W., Araújo, M.B. & Lavorel, S. (2003). Generalized model vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J. Veg. Sci., 14, 669680.
  • Thuiller, W., Araújo, M.B. & Lavorel, S. (2004a). Do we need land-cover data to model species distributions in Europe? J. Biogeogr., 31, 353361.
  • Thuiller, W., Araújo, M.B., Pearson, R.G., Whittaker, R.J., Brotons, L. & Lavorel, S. (2004c). Uncertainty in predictions of extinction risk. Nature, 430, 34.
  • Thuiller, W., Lavorel, S., Midgley, G.F., Lavergne, S. & Rebelo, A.G. (2004b). Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron species in the Cape Floristic Region. Ecology, 85, 16881699.
  • Van Horn, B. (2002). Approaches to habitat modelling: the tensions between pattern and process and between specificity and generality. In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B.). Island Press, Covelo, CA, pp. 6372.
  • Verner, J., Morrison, M.L. & Ralph, C.J. (1986). Wildlife 2000: Modelling Habitat Relationships of Terrestrial Vertebrates. University of Wisconsin Press, Madison, WI.
  • Vetaas, O.R. (2002). Realized and potential climate niches: a comparison of four Rhododendron tree species. J. Biogeogr., 29, 545554.
  • Wiens, J.A. (2002). Predicting species occurrences: progress, problems, and prospects. In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B.). Island Press, Covelo, CA, pp. 739749.
  • Williams, P.H. & Araujo, M.B. (2000). Using probability of persistence to identify important areas for biodiversity conservation. Proc. R. Soc. Lond. B Biol. Sci., 267, 19591966.
  • Williams, P.H., Hannah, L., Andelman, S., Midgley, G.F., Araújo, M.B., Hughes, G.O. et al. (in press). Planning for climate change: identifying minimum-dispersal corridors for the Cape Proteaceae. Conserv. Biol.
  • Wilson, K.A., Westphal, M.I., Possingham, H.P. & Elith, J. (2005). Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol. Conserv., 122, 99112.
  • Wintle, B.A., McCarthy, M.A., Volinsky, C.T. & Kavanagh, R.P. (2003). The use of Bayesian model averaging to better represent uncertainty in ecological models. Conserv. Biol., 17, 15791590.