SEARCH

SEARCH BY CITATION

References

  • Araujo, M.B. (1999). Distribution patterns of biodiversity and the design of a representative reserve network in Portugal. Divers. Distrib., 5, 151163.
  • Araujo, M.B. (2002). Biodiversity hotspots and zones of ecological transition. Conserv. Biol., 16, 16621663.
  • Araujo, M.B. (2004). Matching species with reserves – uncertainties from using data at different resolutions. Biol. Conserv., 118, 533538.
  • Araujo, M.B. & Williams, P.H. (2001). The bias of complementarity hotspots toward marginal populations. Conserv. Biol., 15, 17101720.
  • Araujo, M.B., Williams, P.H., Cabeza, M., Thuiller, W. & Hannah, L. (2004). Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biol., 10, 16181626.
  • Araujo, M.B., Thuiller, W., Williams, P.H. & Reginster, I. (2005). Downscaling European species atlas distributions to a finer resolution: Implications for conservation planning. Global Ecol. Biogeogr., 14, 1730.
  • Austin, M.P. (2002a). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model., 157, 101118.
  • Austin, M.P. (2002b). Case studies of the use of environmental gradients in vegetation and fauna modeling: theory and practice in Australia and New Zealand. In: Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, V.A. & Samson, F.B.). Island Press, Washington, Covelo, London, pp. 7382.
  • Austin, M.P. & Heyligers, P.C. (1989). Vegetation survey design for conservation: gradsect sampling of forests in north-east New South Wales. Biol. Conserv., 50, 1332.
  • Boitani, L., Corsi, F., De Biase, A., D'Inzillo Carranza, I., Ravagli, M., Reggiani, G. et al. (1999). A Databank for the Conservation and Management of African Mammals. Istituto di Ecologia Applicata, Roma.
  • Bonn, A., Rodrigues, A.S.L. & Gaston, K.J. (2002). Threatened and endemic species: are they good indicators of patterns of biodiversity on a national scale? Ecol. Lett., 5, 733741.
  • Brooks, T., Da Fonseca, G.A.B. & Rodrigues, A.S.L. (2004a). Species, data, and conservation planning. Conserv. Biol., 18, 16821688.
  • Brooks, T.M., Da Fonseca, G.A.B. & Rodrigues, A.S.L. (2004b). Protected areas and species. Conserv. Biol., 18, 616618.
  • Burgman, M.A., Lindenmayer, D.B. & Elith, J. (2005). Managing landscapes for conservation under uncertainty. Ecology, 86, 20072017.
  • Burrough, P.A. & McDonnell, R.A. (1998). Principles of Geographic Information Systems. Oxford University Press, Oxford.
  • Cabeza, M., Moilanen, A., Araujo, M.B., Wilson, R.J., Thomas, C.D. & Cowley, M.J.R. (2004). Combining probabilities of occurrence with spatial reserve design. J. Appl. Ecol., 41, 252262.
  • Clevenger, A.P., Wierzchowski, J., Chruszcz, B. & Gunson, K. (2002). GIS-generated, expert-based models for identifying wildlife habitat linkages and planning mitigation passages. Conserv. Biol., 16, 503514.
  • Corsi, F., de Leeuw, J. & Skidmore, A.K. (1999). Modeling species distributions with GIS. In: Research Techniques in Animal Ecology: Controversies and Consequences (eds Boitani, L. & Fuller, T.K.). Columbia University Press, New York, pp. 389434.
  • Davis, F.W., Stoms, D.M., Estes, J.E., Scepan, J. & Scott, J.M. (1990). An information systems approach to the preservation of biological diversity. Int. J. G.I.S., 4, 5578.
  • Dunn, R., Harrison, A.R. & White, R.C. (1990). Positional accuracy and measurement error in digital databases: an empirical study. Int. J. Geogr. Inf. Sci., 4, 385398.
  • Eken, G., Bennun, L., Fishpool, L.D.C., Brooks, T.M., Foster, M., Knox, D. et al. (2004). Key biodiversity areas as site conservation targets. BioSci., 54, 11101118.
  • Elith, J., Burgman, M.A. & Regan, H.M. (2002). Mapping epistemic uncertainty and vague concepts in predictions of species distribution. Ecol. Model., 157, 313329.
  • Elith, J., Graham, C.H., Anderson, R.P., Dudìk, M., Ferrier, S., Guisan, A. et al. (2006). Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 9, 129151.
  • Erasmus, B.F.N., Freitag, S., Gaston, K.J., Erasmus, B.H. & Van Jaarsveld, A.S. (1999). Scale and conservation planning in the real world. Proc. R Soc. Lond. Ser. B – Biol. Sci., 266, 315319.
  • Faith, D.P., Ferrier, S. & Walker, P.A. (2004). The ED strategy: how species-level surrogates indicate general biodiversity patterns through an ‘environmental diversity’ perspective. J. Biogeogr., 31, 12071217.
  • Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol., 51, 331363.
  • Ferrier, S., Manion, G., Mantle, K., Powell, G.V.N., Allnutt, T.F., Burgess, N.D. et al. (2004). Mapping more of terrestrial biodiversity for global conservation assessment. BioSci., 54, 11011109.
  • Fielding, A.H. & Bell, J.F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv., 24, 3849.
  • Freitag, S. & Van Jaarsveld, A.S. (1998). Sensitivity of selection procedures for priority conservation areas to survey extent, survey intensity and taxonomic knowledge. Proc. R. Soc. Lond. Ser. B – Biol. Sci., 265, 14751482.
  • Freitag, S., Hobson, C., Biggs, H.C. & Van Jaarsveld, A.S. (1998). Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a southern African mammal data set. Anim. Conserv., 1, 119127.
  • Funk, V.A. & Richardson, K.S. (2002). Systematic data in biodiversity studies: use it or lose it. Syst. Biol., 51, 303316.
  • Gaston, K.J. (1991). How large is a species’ geographic range? Oikos, 61, 434438.
  • Gaston, K.J. (1993). Rarity. Chapman and Hall, London.
  • Gaston, K.J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford, New York.
  • Gaston, K.J. & Rodrigues, A.S.L. (2003). Reserve selection in regions with poor biological data. Conserv. Biol., 17, 188195.
  • Gaston, K.J., Rodrigues, A.S.L., Van Rensburg, B.J., Koleff, P. & Chown, S.L. (2001). Complementary representation and zones of ecological transition. Ecol. Lett., 4, 49.
  • Gladstone, W. & Davis, J. (2003). Reduced survey intensity and its consequences for marine reserve selection. Biodiv. Conserv., 12, 15251536.
  • Graham, C.H., Graham, C.H., Moritz, C., Ferrier, S., Huettman, F. & Peterson, A.T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol., 19, 497503.
  • Gu, W. & Swihart, R.K. (2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biol. Conserv., 116, 195203.
  • Guisan, A. & Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. Ecol. Model., 135, 147186.
  • Haila, Y. & Margules, C.R. (1996). Survey research in conservation biology. Ecography, 19, 323331.
  • Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. et al. (1997). The Atlas of Southern African Birds. BirdLife South Africa, Johannesburg.
  • Hopkinson, P. (2000). National-scale conservation assessments at an appropriate resolution. Divers. Distrib., 6, 195204.
  • Howard, P.C., Viskanic, P., Davenport, T.R.B., Kigenyi, F.W., Baltzer, M., Dickinson, C.J. et al. (1998). Complementarity and the use of indicator groups for reserve selection in Uganda. Nature, 394, 472475.
  • Huston, M.A. (2002). Introductory essay: critical issues for improving predictions. In: Predicting species occurrences: issues of accuracy and scale (eds Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, V.A. & Samson, F.B.). Island Press, Washington, Covelo, London, pp. 721.
  • IUCN (1994). IUCN Red List Categories. IUCN (The World Conservation Union), Gland.
  • IUCN, Conservation International and NatureServe (2004). Global Amphibian Assessment. Available at http://www.globalamphibians.org.
  • Kadmon, R., Farber, O. & Danin, A. (2004). Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol. Applic., 14, 401413.
  • Keller, C.M.E. & Scallan, J.T. (1999). Potential roadside biases due to habitat changes along breeding bird survey routes. Condor, 101, 5057.
  • Kirkpatrick, J.B. (1983). An iterative method for establishing priorities for the selection of natural reserves: an example from Tasmania. Biol. Conserv., 25, 127134.
  • Larsen, F.W. & Rahbek, C. (2003). Influence of scale on conservation priority setting – a test on African mammals. Biodiv. Conserv., 12, 599614.
  • Lawes, M.J. & Piper, S.E. (1998). There is less to binary maps than meets the eye: the use of species distribution data in the southern African sub-region. S. Afr. J. Sci., 94, 207210.
  • Leathwick, J.R. (1998). Are New Zealand's Nothofagus species in equilibrium with their environment? J. Veg. Sci., 9, 719732.
  • Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2001). The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol., 70, 966979.
  • Loiselle, B.A., Howell, C.A., Graham, C.H., Goerck, J.M., Brooks, T., Smith, K.G. et al. (2003). Avoiding pitfalls of using species distribution models in conservation planning. Conserv. Biol., 17, 15911600.
  • Lombard, A.T., Cowling, R.M., Pressey, R.L. & Rebelo, A.G. (2003). Effectiveness of land classes as surrogates for species in conservation planning for the Cape Floristic Region. Biol. Conserv., 112, 4562.
  • MacKenzie, D.I., Nicholls, J.D., Droege, S., Royle, J.A. & Langtimm, C.A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 22482255.
  • Margules, C.R. & Pressey, R.L. (2000). Systematic conservation planning. Nature, 405, 243253.
  • Meier, R. & Dikow, T. (2004). Significance of specimen databases from taxonomic revisions for estimating and mapping the global species diversity of invertebrates and repatriating reliable specimen data. Conserv. Biol., 18, 478488.
  • Moilanen, A. (2005a). Methods for reserve selection: interior point search. Biol. Conserv., 124, 485492.
  • Moilanen, A. (2005b). Reserve selection using nonlinear species distribution models. Am. Nat., 165, 695706.
  • Morrison, M.L., Marcot, B.G. & Mannan, R.W. (1998). Wildlife–Habitat Relationships: Concepts and Applications, 2nd edn. University of Wisconsin Press, Madison, WI.
  • Nelson, B.W., Ferreira, C.A.C., da Silva, M.F. & Kawasaki, M.L. (1990). Endemism centres, refugia and botanical collection intensity in Brazilian Amazonia. Nature, 345, 714716.
  • Pearce, J. & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model., 133, 225245.
  • Polasky, S., Camm, J.D., Solow, A.R., Csuti, B., White, D. & Ding, R. (2000). Choosing reserve networks with incomplete species information. Biol. Conserv., 94, 110.
  • Ponder, W.F., Carter, G.A., Flemons, P. & Chapman, R.R. (2001). Evaluation of museum collection data for use in biodiversity assessment. Conserv. Biol., 15, 648657.
  • Possingham, H.P., Wilson, K.A., Andelman, S.J. & Vynne, C.H. (2006). Protected areas: goals, limitations, and design. In: Principles of Conservation Biology (eds Groom, M.J., Meffe, G.K. & Carroll, C.R.). Sinauer Associates Inc., Sundaland, MA, pp. 509533.
  • Pressey, R.L. (2004). Conservation planning and biodiversity: assembling the best data for the job. Conserv. Biol., 18, 16771681.
  • Pressey, R.L., Cowling, R.M. & Rouget, M. (2003). Formulating conservation targets for biodiversity pattern and process in the Cape Floristic Region, South Africa. Biol. Conserv., 112, 99127.
  • Reddy, S. & Davalos, L.M. (2003). Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr., 30, 17191727.
  • Reid, W.V. (1998). Biodiversity hotspots. Trends Ecol. Evol., 13, 275280.
  • Rodrigues, A.S.L., Gaston, K.J. & Gregory, R.D. (2000a). Robustness of reserve selection procedures under temporal species turnover. Proc. R. Soc. Lond. Ser. B – Biol. Sci., 267, 4955.
  • Rodrigues, A.S.L., Gaston, K.J. & Gregory, R.D. (2000b). Using presence-absence data to establish reserve selection procedures that are robust to temporal species turnover. Proc. R. Soc. Lond. Ser. B – Biol. Sci., 267, 897902.
  • Rodrigues, A.S.L., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Cowling, R.M. et al. (2004). Effectiveness of the global protected area network in representing species diversity. Nature, 428, 640643.
  • Rondinini, C. & Boitani, L. (2006). Differences in the umbrella effects of African amphibians and mammals based on two estimators of the area of occupancy. Conserv. Biol., 20, 170179.
  • Rondinini, C., Stuart, S. & Boitani, L. (2005). Habitat suitability models reveal shortfall in conservation planning for African vertebrates. Conserv. Biol., 19, 14881497.
  • Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, V.A. et al. (2002). Predicting Species Occurences: Issues of Accuracy and Scale. Island Press, Washington, Covelo, London.
  • Smith, T.B., Kark, S., Schneider, C.J., Wayne, R.K. & Moritz, C. (2001). Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends Ecol. Evol., 16, 431.
  • Stattersfield, A.J. & Capper, D.R. (2000). Threatened Birds of the World: The Official Source for Birds on the IUCN Red List. BirdLife International, Cambridge.
  • Stoms, D.M. (1992). Effects of habitat map generalization in biodiversity assessment. Photogramm. Eng. Remote Sens., 58, 15871591.
  • Su, C.J., Debinski, D.M., Jakubauskas, M.E. & Kindscher, K. (2004). Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol., 18, 167173.
  • Tyre, A.J., Possingham, H.P. & Lindenmayer, D.B. (2001). Inferring process from pattern: can territory occupancy provide information about life history parameters. Ecol. Applic., 11, 17221737.
  • Tyre, A.J., Tenhumberg, B., Field, S.A., Possingham, H.P., Niejalke, D. & Parris, K. (2003). Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Applic., 13, 17901801.
  • Van Horne, B. (1983). Density as a misleading indicator of habitat quality. J. Wildl. Manage., 47, 893901.
  • Vaughan, I.P. & Ormerod, S.J. (2003). Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. Conserv. Biol., 17, 16011611.
  • Vaughan, I.P. & Ormerod, S.J. (2005). The continuing challenges of testing species distribution models. J. Appl. Ecol., 42, 720730.
  • Wessels, K.J., Reyers, B. & Van Jaarsveld, A.S. (2000). Incorporating land cover information into regional biodiversity assessments in South Africa. Anim. Conserv., 3, 6779.
  • Williams, P.H. & Araujo, M.B. (2000). Using probability of persistence to identify important areas for biodiversity conservation. Proc. R. Soc. Lond. Ser. B – Biol. Sci., 267, 19591966.
  • Williams, P.H., Margules, C.R. & Hilbert, D.W. (2002). Data requirements and data sources for biodiversity priority area selection. J. Biosci., 27, 327338.
  • Wilson, K.A., Westphal, M.I., Possingham, H.P. & Elith, J. (2005). Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol. Conserv., 122, 99112.
  • Wintle, B.A., McCarthy, M.A., Volinski, C.T. & Kavanagh, R.P. (2003). The use of Bayesian model averaging to better represent uncertainty in ecological models. Cons. Biol., 17, 15791590.
  • Wintle, B.A., McCarthy, M.A., Parris, K. & Burgman, M.A. (2004). Precision and bias of methods for estimating point survey detection problems. Ecol. Applic., 14, 703712.
  • Wintle, B.A., Burgman, M.A., McCarthy, M.A. & Kavanagh, R.P. (2005). Estimating and dealing with detectability in occupancy surveys: forest owls and arboreal marsupials. J. Wildl. Manage., 69, 905917.