A synthesis of experimental work on parasite local adaptation




The study of parasite local adaptation, whereby parasites perform better on sympatric hosts than on allopatric hosts and/or better on their own host population than do other parasites, is of great importance to both basic and applied biology. Theoretical examination of host–parasite coevolution predicts that parasite migration rate, generation time and virulence all contribute to the pattern of parasite local adaptation, such that parasites with greater dispersal ability, more frequent reproduction and/or high virulence ought to exhibit increased infectivity on local hosts. Here, we present a meta-analysis of experimental work from 57 host–parasite systems across 54 local adaptation studies to directly test theoretical predictions concerning the effect of each attribute on parasite adaptation. As expected, we find that studies of parasites with higher migration rates than their hosts report local adaptation, as measured by infection success, significantly more often than studies of parasites with relatively low migration rates. Furthermore, this synthesis serves to identify biases in the current body of work and highlight areas with the greatest need for further study. We emphasize the importance of unifying the field with regard to experimental methods, local adaptation definitions and reported statistics for cross-infection studies.