SEARCH

SEARCH BY CITATION

References

  • Alonso, D., Etienne, R.S. & McKane, A.J. (2006). The merits of neutral theory. Trends Ecol. Evol., 21, 451457.
  • Atmar, W. & Patterson, B.D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373382.
  • Bakkes, J.A. (1994). An Overview of Environmental Indicators: State of the art and Perspectives. UNEP/Earthprint, Bilthaven, Netherlands.
  • Bazzaz, F.A. (1975). Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56, 485488.
  • Bell, G. (2000). The distribution of abundance in neutral communities. Am. Nat., 155, 606617.
  • Bell, G. (2001). Neutral macroecology. Science, 293, 24132418.
  • Bell, G. (2003). The interpretation of biological surveys. Proc. R Soc. Lond. B, 270, 25312542.
  • Borda-de-Agua, L., Hubbell, S.P. & McAllister, M. (2002). Species-area curves, diversity indices, and species abundance distributions: A multifractal analysis. Am. Nat., 159, 138155.
  • Boswell, M.T. & Patil, G.P. (1971). Chance mechanisms generating the logarithmic series distribution used in the analysis of number of species and individuals. In: Statistical Ecology, Volume I, Spatial Patterns and Statistical Distirbutions (eds Patil, G.P., Pielou, E.C. & Waters, W.E.). Pennsylvania State University Press, University Park, PA, pp. 99130.
  • Brian, M.V. (1953). Species frequencies in random samples from animal populations. J. Anim. Ecol., 22, 5764.
  • Brown, J.H., Mehlman, D.H. & Stevens, G.C. (1995). Spatial variation in abundance. Ecology, 76, 20282043.
  • Bulmer, M.G. (1974). Fitting poisson lognormal distribution to species-abundance data. Biometrics, 30, 101110.
  • Burnham, K.P. & Anderson, D.R. (1998). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edn. Springer, New York, NY.
  • Caswell, H. (1976). Community structure: a neutral model analysis. Ecol. Monogr., 46, 327354.
  • Chave, J. (2004). Neutral theory and community ecology. Ecol. Lett., 7, 241253.
  • Chiarucci, A., Wilson, J.B., Anderson, B.J. & De Dominicis, V. (1999). Cover versus biomass as an estimate of species abundance: does it make a difference to the conclusions? J. Veg. Sci., 10, 3542.
  • Chu, J. & Adami, C. (1999). A simple explanation for taxon abundance patterns. Int. Natl Acad. Sci., 96, 1501715019.
  • Clarke, K.R. & Warwick, R.M. (2001). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E). Plymouth Marine Laboratory, Plymouth, UK.
  • Cohen, A.C. (1949). On estimating the mean and standard deviation of truncated normal distributions. J. Am. Stat. Assoc., 44, 518525.
  • Cohen, J.E. (1968). Alternate derivations of a species-abundance relation. Am. Nat., 102, 165.
  • Coleman, B. (1981). Random placement and species area relations. Math. Biosci., 54, 191215.
  • Condit, R., Hubbell, S.P., LaFrankie, J.V., Sukumar, R., Manokaran, N., Foster, R.B. et al. (1996). Species–area and species–individual relationships for tropical trees: a comparison of three 50-ha plots. J. Ecol., 84, 549562.
  • Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N. et al. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 14141418.
  • Connolly, S.R., Hughes, T.P., Bellwood, D.R. & Karlson, R.H. (2005). Community structure of corals and reef fishes at multiple scales. Science, 309, 13631365.
  • Connor, E.F. & McCoy, E.D. (1979). The statistics and biology of the species–area relationship. Am. Nat., 113, 791833.
  • Cotgreave, P. & Harvey, P.H. (1994). Evennes of abundance in bird communities. J. Anim. Ecol., 63, 365374.
  • Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699700.
  • Damuth, J. (1991). Of size and abundance. Nature, 351, 268269.
  • Darwin, C. (1859). On the Origin of Species. Clows and Sons, London.
  • Dennis, B. & Patil, G.P. (1984). The gamma distribution and weighted multimodal gamma distributions as models of population abundance. Math. Biosci., 68, 187212.
  • Dennis, B. & Patil, G.P. (1988). Applications in ecology. In: Lognormal Distributions: Theory and Applications(edsCrow, E.L. & Shimizu, K.). Marcel Dekker, New York, pp. 303330.
  • Dewdney, A.K. (1998). A general theory of the sampling process with applications to the ‘veil line’. Theor. Popul. Biol., 54, 294302.
  • Dewdney, A.K. (2000). A dynamical model of communities and a new species-abundance distribution. Biol. Bull., 198, 152165.
  • Diserud, O.H. & Engen, S. (2000). A general and dynamic species abundance model, embracing the lognormal and the gamma models. Am. Nat., 155, 497511.
  • Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 8082.
  • Engen, S. & Lande, R. (1996a). Population dynamic models generating species abundance distributions of the gamma type. J. Theor. Biol., 178, 325331.
  • Engen, S. & Lande, R. (1996b). Population dynamic models generating the lognormal species abundance distribution. Math. Biosci., 132, 169183.
  • Engen, S., Lande, R., Walla, T. & DeVries, P.J. (2002). Analyzing spatial structure of communities using the two-dimensional poisson lognormal species abundance model. Am. Nat., 160, 6073.
  • Enquist, B.J., Sanderson, J. & Weiser, M.D. (2002). Modeling macroscopic patterns in ecology. Science, 295, 18351837.
  • Etienne, R.S. (2005). A new sampling formula for neutral biodiversity. Ecol. Lett., 8, 253260.
  • Etienne, R.S. (2007). A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecol. Lett., 10, 608618.
  • Etienne, R.S. & Alonso, D. (2005). A dispersal-limited sampling theory for species and alleles. Ecol. Lett., 8, 11471156.
  • Etienne, R.S. & Olff, H. (2004a). How dispersal limitation shapes species-body size distributions in local communities. Am. Nat., 163, 6983.
  • Etienne, R.S. & Olff, H. (2004b). A novel genealogical approach to neutral biodiversity theory. Ecol. Lett., 7, 170175.
  • Etienne, R.S. & Olff, H. (2005). Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol. Lett., 8, 493504.
  • Etienne, R.S., Alonso, D. & McKane, A.J. (2007a). The zero-sum assumption in neutral biodiversity theory. J. Theor. Biol., http://dx.doi.org/10.1016/j.jtbi.2007.06.010 .
  • Etienne, R.S., Apol, M.E.F., Olff, H. & Weissing, F.J. (2007b). Modes of speciation and the neutral theory of biodiversity. Oikos, 116, 241258.
  • Evans, M., Hastings, N. & Peacock, B. (1993). Statistical Distributions, 2nd edn. John Wiley & Sons, New York.
  • Fauth, J.E., Bernardo, J., Camara, M., Resetarits, W.J., Jr, Buskirk, J.V. & McCollum, S.A. (1996). Simplifying the jargon of community ecology: a conceptual approach. Am. Nat., 147, 282286.
  • Fischer, J. & Lindenmayer, D.B. (2002). Treating the nestedness temperature calculator as a ‘black box’ can lead to false conclusions. Oikos, 99, 193199.
  • Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species and the number of individuals in a random sample from an animal population. J. Anim. Ecol., 12, 4258.
  • Frontier, S. (1994). Species-diversity as a fractal property of biomass. In: Fractals in the Natural and Applied Sciences (ed. Novak, M.) North-Holland Publishing, Amsterdam, pp. 119127.
  • Frontier, S. (1985). Diversity and structure in aquatic ecosystems. Oceanogr. Mar. Biol., 23, 253312.
  • Galton, F. (1879). The geometric mean in vital and social statistics. Proc. R Soc. Lond., 29, 365367.
  • Gaston, K.J. (1996). The multiple forms of the interspecific abundance-distribution relationship. Oikos, 76, 211220.
  • Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. (2000). Abundance-occupancy relationships. J. Appl. Ecol., 37, S39S59.
  • Gauch, H.G.J. & Whittaker, R.H. (1972). Coencline simulation. Ecology, 53, 446451.
  • Gilbert, B., Laurance, W.F., Leigh, E.G., Jr & Nascimento, H.E. (2006). Can neutral theory predict the responses of amazonian tree communities to forest fragmentation? Am. Nat., 168, 304317.
  • Gotelli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett., 4, 379391.
  • Gray, J.S. (1979). Pollution-induced changes in populations. Philos. Trans. R Soc. Lond. B, 286, 545561.
  • Gray, J.S. (1987). Species-abundance patterns. In: Organization of Communities Past and Present (eds Gee, J.H.R. & Giller, P.S.). Blackwell Science, Oxford, pp. 5368.
  • Gray, J.S., Bjorgesaeter, A. & Ugland, K.I. (2005). The impact of rare species on natural assemblages. J. Anim. Ecol., 74, 11311139.
  • Gray, J.S., Bjorgesaeter, A. & Ugland, K.I. (2006). On plotting species abundance distributions. J. Anim. Ecol., 75, 752756.
  • Green, J.L. & Plotkin, J.B. (2007). A statistical theory for sampling species abundances. Ecol. Lett., 10, doi: DOI: 10.1111/j.1461-0248.2007.01101.x.
  • Green, J.L., Harte, J. & Ostling, A. (2003). Species richness, endemism and abundance patterns: tests of two fractal models in a serpentine grassland. Ecol. Lett., 6, 919928.
  • Gregory, R.D. (2000). Abundance patterns of European breeding birds. Ecography, 23, 201208.
  • Hamer, K.C., Hill, J.K., Lace, L.A. & Langan, A.M. (1997). Ecological and biogeographical effects of forest disturbance on tropical butterflies of Sumba Indonesia. J. Biogeogr., 24, 6775.
  • Hanski, I. (1982). Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210221.
  • Hanski, I. & Gyllenberg, M. (1997). Uniting two general patterns in the distribution of species. Science, 275, 397400.
  • Harte, J., Kinzig, A.P. & Green, J. (1999). Self-similarity in the distribution and abundance of species. Science, 284, 334336.
  • Harte, J., Conlisk, E., Ostling, A., Green, J.L. & Smith, A.B. (2005). A theory of spatial structure in ecological communities at multiple spatial scales. Ecol. Monogr., 75, 179197.
  • He, F.L. & Legendre, P. (2002). Species diversity patterns derived from species–area models. Ecology, 83, 11851198.
  • He, F., Gaston, K.J. & Wu, J. (2002). On species occupancy-abundance models. Ecoscience, 9, 119126.
  • Heck, K.L.J., Van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 56, 14591461.
  • Hengeveld, R. & Haeck, J. (1981). The distribution of abundance II Models and implications. Proc. K. Ned. Akad. Wet. C, 84, 257284.
  • Hengeveld, R., Kooijman, S.A.L.M. & Taillie, C. (1979). A spatial model explaining species-abundance curves. In: Statistical Distributions in Ecological Work (eds Ord, J.K., Patil, G.P. & Taillie, C.). International Co-operative Publishing House, Fairland, MD, pp. 337347.
  • Hill, J.K., Hamer, K.C., Lace, L.A. & Banham, W.M.T. (1995). Effects of selective logging on tropical forest butterflies on Buru, Indonesia. J. Appl. Ecol., 32, 754760.
  • Hoagland, B.W. & Collins, S.L. (1997). Gradient models, gradient analysis, and hierarchical structure in plant communities. Oikos, 78, 2330.
  • Hubbell, S.P. (1979). Tree dispersion, abundance and diversity in a tropical dry forest. Science, 203, 12991309.
  • Hubbell, S.P. (2001). A Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
  • Hubbell, S.P. (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 13871398.
  • Hughes, R.G. (1986). Theories and models of species abundance. Am. Nat., 128, 879899.
  • Hurlbert, S.H. (1971). The nonconcept of species diversity: a critque and alternative parameters. Ecology, 52, 577586.
  • Hurlbert, A.H. (2004). Species–energy relationships and habitat complexity. Ecol. Lett., 7, 714720.
  • Kempton, R.A. & Taylor, L.R. (1974). Log-series and log-normal parameters as diversity discriminants for lepidoptera. J. Anim. Ecol., 43, 381399.
  • Kendall, D.G. (1948a). On some modes of population growth leading to Fisher, R.A. logarithmic series distribution. Biometrika, 35, 615.
  • Kendall, D.G. (1948b). On the generalized ‘birth-and-death’ process. Ann. Math. Stat., 19, 115.
  • Labra, F.A., Abades, S. & Marquet, P.A. (2005). Distribution and abundance: scaling patterns in exotic and native bird species. In: Species Invasions. Insights Into Ecology, Evolution and Biogeography (eds Sax, D.F., Stachowicz, J.J. & Gaines, S.D.). Sinauer Associates, Sunderland, MA, pp. 421446.
  • Lakatos, I. (1978). Introduction: science and pseudoscience. In: The Methodology of Scientific Research Programs (eds Worrall, J. & Currie, G.). Cambridge University Press, Cambridge, pp. 18.
  • Lambshead, P.J.D., Platt, H.M. & Shaw, K.M. (1983). The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. His., 17, 859874.
  • Latimer, A.M., Silander, J.A. & Cowling, R.M. (2005). Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science, 309, 17221725.
  • Lawton, J.H. (1993). Range, population abundance and conservation. Trends Ecol. Evol., 8, 409413.
  • Levin, S.A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 19431967.
  • Lewontin, R.C., Ginzburg, L.R. & Tuljapurkar, S.D. (1978). Heterosis as an explanation for large amounts of genic polymorphism. Genetics, 88, 149170.
  • Mac Nally, R. (2007). Use of the abundance spectrum and relative-abundance distributions to analyze assemblage change in massively altered landscapes. Am. Nat., in press.
  • MacArthur, R. (1957). On the relative abundance of bird species. Proc. Natl Acad. Sci., 43, 293295.
  • MacArthur, R. (1960). On the relative abundance of species. Am. Nat., 94, 2536.
  • MacArthur, R. (1966). Note on Mrs Pielou’s comments. Ecology, 47, 1074.
  • MacLachlan, G. & Peel, D. (2000). Finite Mixture Models. John Wiley & Sons, New York.
  • Magurran, A.E. (2004). Measuring Biological Diversity, 2nd edn. Blackwell, Oxford.
  • Magurran, A.E. (2005). Species abundance distributions: pattern or process? Funct. Ecol., 19, 177181.
  • Magurran, A.E. (2007). Species abundance distributions over time. Ecol. Lett., 10, 347354.
  • Magurran, A.E. & Henderson, P.A. (2003). Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714716.
  • Mandelbrot, B. (1965). Information theory and psycholinguistics. In: Scientific Psychology: Principles and Applications, (ednWolman, B.A. & Nagel, E.N.). Basic Books, New York, pp. 350368.
  • Marks, C.O. & Lechowicz, M.J. (2006). Alternative designs and the evolution of functional diversity. Am. Nat., 167, 5566.
  • Marquet, P.A., Navarrete, S.A. & Castilla, J.C. (1990). Scaling population density to body size in rocky intertidal communities. Science, 250, 11251127.
  • Marquet, P.A., Keymer, J.A. & Cofre, H. (2003). Breaking the stick in space: of niche models, metacommunities and patterns in the relative abundance of species. In: Macroecology: Concepts and Consequences (eds Blackburn, T.M. & Gaston, K.J.). Blackwell Science, Oxford, pp. 6486.
  • Marquet, P.A., Fernández, M., Navarrete, S.A. & Valdivinos, C. (2004). Diversity emerging: towards a deconstruction of biodiversity patterns. In: Frontiers of Biogeography: New Directions in the Geography of Nature (ed Heaney, M.L.a.L.R.). Cambridge University Press, Cambridge, pp. 192209.
  • Martinez, W.L. & Martinez, A.R. (2002). Computational Statistics Handbook With MATLAB. Chapman & Hall/CRC, Boca Raton.
  • Maurer, B.A. (1990). The relationship between distribution and abundance in a patchy environment. Oikos, 58, 181189.
  • May, R.M. (1975). Patterns of species abundance and diversity. In: Ecology and Evolution of Communities (eds Cody, M.L. & Diamond, J.M.). Belknap Press of Harvard University Press, Cambridge MA, pp. 81120.
  • McAlister, D. (1879). The law of the geometric mean. Proc. R Soc. Lond., 29, 367376.
  • McGill, B. (2003a). Strong and weak tests of macroecological theory. Oikos, 102, 679685.
  • McGill, B.J. (2003b). Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecol. Lett., 6, 766773.
  • McGill, B.J. (2003c). A test of the unified neutral theory of biodiversity. Nature, 422, 881885.
  • McGill, B.J. (2006). A renaissance in the study of abundance. Science, 314, 770771.
  • McGill, B. & Collins, C. (2003). A unified theory for macroecology based on spatial patterns of abundance. Evol. Ecol. Res., 5, 469492.
  • McGill, B.J., Hadly, E.A. & Maurer, B.A. (2005). Community inertia of Quaternary small mammal assemblages in North America. Proc. Natl Acad. Sci., 102, 1670116706.
  • McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006a). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178185.
  • McGill, B.J., Maurer, B.A. & Weiser, M.D. (2006b). Empirical evaluation of the neutral theory. Ecology, 87, 14111423.
  • Motomura, I. (1932). On the statistical treatment of communities. Zool. Mag., 44, 379383.
  • Mouillot, D. & Lepretre, A. (2000). Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess., 63, 279295.
  • Mouillot, D., Lepretre, A., Andrei-Ruiz, M.C. & Viale, D. (2000). The Fractal model: a new model to describe the species accumulation process and relative abundance distribution (RAD). Oikos, 90, 333342.
  • Munoz, F., Couteron, P., Ramesh, B. & Etienne, R. (2007). Estimating parameters of neutral communities: from one single large to several small samples. Ecology, (in press).
  • Murray, B.R. & Westoby, M. (2000). Properties of species in the tail of rank-abundance curves: the potential for increase in abundance. Evol. Ecol. Res., 2, 583592.
  • Murray, B.R., Rice, B.L., Keith, D.A., Myerscough, P.J., Howell, J., Floyd, A.G. et al. (1999). Species in the tail of rank-abundance curves. Ecology, 80, 18061816.
  • Murray, B.R., Thrall, P.H., Gill, A.M. & Nicotra, A.B. (2002). How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Aust. Ecol., 27, 291310.
  • Nee, S. (2003). The unified phenomenological theory of biodiversity. In: Macroecology: Concepts and Consequences (eds Blackburn, T.M. & Gaston, K.J.). Blackwell Science, Oxford, pp. 3144.
  • Nee, S., Harvey, P.H. & May, R.M. (1991). Lifting the veil on abundance patterns. Proc. R Soc Lond Ser. B Biol. Sci., 243, 161163.
  • Nekola, J.C. & Brown, J.H. (2007). The wealth of species: ecological communities, complex systems and the legacy of Frank Preston. Ecol. Lett., 10, 188196.
  • Ockham, W.. (1495). Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi Editioni Lugdenensi, i, dist. 27, qu. 2, K.
  • Olszewski, T.D. (2004). A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos, 104, 377387.
  • Patil, G.P. & Taillie, C. (1982). Diversity as a concept and its measurement. J. Am. Stat. Assoc., 77, 548561.
  • Peters, R.H. (1991). A Critique for Ecology. Cambridge University Press, Cambridge.
  • Pielou, E.C. (1975). Ecological Diversity. John Wiley & Sons, New York.
  • Pielou, E.C. (1977). Mathematical Ecology. John Wiley & Sons, New York.
  • Platt, J.R. (1964). Strong inference. Science, 146, 347353.
  • Plotkin, J.B. & Muller-Landau, H.C. (2002). Sampling the species composition of a landscape. Ecology, 83, 33443356.
  • Preston, F.W. (1948). The commonness and rarity of species. Ecology, 29, 254283.
  • Preston, F.W. (1960). Time and space and the variation of species. Ecology, 41, 611627.
  • Pueyo, S. (2006). Diversity: between neutrality and structure. Oikos, 112, 392405.
  • Raunkiaer, C. (1909). Formationsundersogelse og Formationsstatistik. Bot. Tidskr., 30, 20132.
  • Ricklefs, R.E. (2003). A comment on Hubbell’s zero-sum ecological drift model. Oikos, 100, 185192.
  • Riitters, K.H., O’Neill, R.V., Hunsaker, C.T., Wickham, J.D., Yankee, D.H., Timmins, S.P. et al. (1995). A factor analysis of landscape pattern and structure metrics. Landsc. Ecol., 10, 2339.
  • Robbins, C.S., Bystrak, D. & Geissler, P.H. (1986). The Breeding Bird Survey: Its First Fifteen Years, 1965–1979. US Department of the Interior Fish and Wildlife Service, Washington, DC.
  • Rosenzweig, M.L. (1995). Species Diversity in Space and Time. Cambridge University Press, Cambridge.
  • Rosenzweig, M.L. & Abramsky, Z. (1997). Two gerbils of the Negev: a long-term investigation of optimal habitat selection and its consequences. Evol. Ecol., 11, 733756.
  • Rosenzweig, M.L. & Lomolino, M.V. (1997). Who gets the short bits of the broken stick. In: The Biology of Rarity: Causes and Consequences of Rare-Common Differences (eds Kunin, W.E. & Gaston, K.J.). Chapman & Hall, London, pp. 6390.
  • Rosindell, J. & Cornell, S.J. (2007). Species-area relationships from a spatially explicit neutral model in an infinite landscape. Ecol. Lett., 7, 586595.
  • Russo, S.E., Robinson, S.K. & Terborgh, J. (2003). Size-abundance relationships in an amazonian bird community: implications for the energetic equivalence rule. Am. Nat, 161, 267283.
  • Sanders, H.L. (1968). Marine benthic diversity: a comparative study. Am. Nat., 102, 243282.
  • Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B. & Charnov, E.L. (2004). Effects of body size and temperature on population growth. Am. Nat., 163, 429441.
  • Shipley, B., Vile, D. & Garnier, E. (2006). From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812814.
  • Simberloff, D.S. (1972). Properties of the rarefaction diversity measurement. Am. Nat., 106, 414418.
  • Simon, H.A. (1955). On a class of skew distribution functions. Biometrika, 42, 425440.
  • Soule, M.E. (1986). Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, MA.
  • Southwood, T.R.E. (1996). The Croonian lecture, 1995: natural communities: structure and dynamics. Philos. Trans. Biol. Sci., 351, 11131129.
  • Stirling, G. & Wilsey, B. (2001). Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat., 158, 286299.
  • Sugihara, G. (1980). Minimal community structure: an explanation of species-abundance patterns. Am. Nat., 116, 770787.
  • Sugihara, G., Bersier, L.F., Southwood, T.R.E., Pimm, S.L. & May, R.M. (2003). Predicted correspondence between species abundances and dendrograms of niche similarities. Proc. Natl Acad. Sci. USA., 100, 52465251.
  • Thibault, K.M., White, E.P. & Ernest, S.K.M. (2004). Temporal dynamics in the structure and composition of a desert rodent community. Ecology, 85, 26492655.
  • Tokeshi, M. (1993). Species abundance patterns and community structure. Adv. Ecol. Res., 24, 111186.
  • Tokeshi, M. (1996). Power fraction: a new explanation of relative abundance patterns in species-rich assemblages. Oikos, 75, 543550.
  • Tuljapurkar, S.D. (1990). Population Dynamics in Variable Environments. Springer-Verlag, New York.
  • Ugland, K.I. & Gray, J.S. (1982). Lognormal distributions and the concept of community equilibrium. Oikos, 39, 171178.
  • Ugland, K.I. & Gray, J.S. (1983). Reanalysis of Caswell’s neutral models. Ecology, 64, 603605.
  • Ugland, K.I., Gray, J.S. & Ellingsen, K.E. (2003). The species-accumulation curve and estimation of species richness. J. Anim. Ecol., 72, 888897.
  • Ugland, K.I., Lambshead, P.J.D., McGill, B., Gray, J.S., O’Dea, N., Ladle, R.J. et al. (2007). Modelling dimensionality in species abundance distributions: description and evaluation of the Gambin model. Evol. Ecol. Res., 9, 112.
  • Ulrich, W. & Ollik, M. (2004). Frequent and occasional species and the shape of relative-abundance distributions. Divers. Distrib., 10, 263269.
  • Volkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 10351037.
  • Warwick, R.M. (1986). A new method for detecting pollution effects on marine macrobenthic communities. Mar. Biol., 92, 557562.
  • Watterson, G.A. (1974). The sampling theory of selectively neutral alleles. Adv. Appl. Probability, 6, 463488.
  • Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002). Phylogenies and community ecology. Annu. Rev. Ecol. Syst., 33, 475505.
  • Weiher, E. & Keddy, P.A. (1999). Relative abundance and evenness patterns along diversity and biomass gradients. Oikos, 87, 355.
  • White, E.P., Ernest, S.K.M., Kerkhoff, A.J. & Enquist, B.J. (2007). Relationships between body size and abundance in ecology. Trends Ecol. Evol., 22, 323330.
  • Whittaker, R.H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr., 30, 279338.
  • Whittaker, R.H. (1965). Dominance and diversity in land plant communities. Science, 147, 250260.
  • Whittaker, R.H. (1967). Gradient analysis of vegetation. Biol. Rev., 42, 207264.
  • Whittaker, R.H. (1975). Communities and Ecosystems, 2nd edn. MacMillan Publishers, New York.
  • Wiens, J.A. (1989). Spatial scaling in ecology. Funct. Ecol., 3, 385397.
  • Williams, C.B. (1964). Patterns in the Balance of Nature. Academic Press, London.
  • Williamson, M. & Gaston, K.J. (2005). The lognormal distribution is not an appropriate null hypothesis for the species abundance distribution. J. Anim. Ecol., 74, 114.
  • Wilsey, B.J., Chalcraft, D.R., Bowles, C.M. & Willig, M.R. (2005). Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology, 86, 11781184.
  • Wilson, J.B. (1991). Methods for fitting dominance diversity curves. J. Veg. Sci., 2, 3546.
  • Wilson, J.B. (1993). Would we recognise a broken-stick community if we found one? Oikos, 67, 181183.
  • Wilson, J.B., Wells, T.C.E., Trueman, I.C., Jones, G., Atkinson, M.D., Crawley, M.J. et al. (1996). Are there assembly rules for plant species abundance? An investigation in relation to soil resources and successional trends? J. Ecol., 84, 527538.
  • Wilson, J.B., Gitay, H., Steel, J.B. & King, W.M. (1998). Relative abundance distributions in plant communities: effects of species richness and of spatial scale. J. Veg. Sci., 9, 213220.
  • Wilson, W.G., Lundberg, P., Vazquez, D.P., Shurin, J.B., Smith, M.D., Langford, W. et al. (2003). Biodiversity and species interactions: extending Lotka-Volterra community theory. Ecol. Lett., 6, 944952.
  • Winemiller, K.O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr., 60, 331367.
  • Wootton, J.T. (2005). Field parameterization and experimental test of the neutral theory of biodiversity. Nature, 433, 309312.
  • Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative analysis of nested subset patterns of species composition. Oecologia, 113, 120.
  • Yin, Z.Y., Ren, H., Zhang, Q.M., Peng, S.L., Guo, Q.F. & Zhou, G.Y. (2005). Species abundance in a forest community in south China: a case of poisson lognormal distribution. J. Integr. Plant Biol., 47, 801810.
  • Yule, G.U. (1924). A mathematical theory of evolution based on the conclusions of Dr J C Willis. Philosophical Transactions of the Royal Society B, 213, 2187.
  • Zipf, G.K. (1949). Human Behaviour and the Principle of Least-Effort. Addison-Wesley Publishing Co., Cambridge, MA.