SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M. & Stegun, I.A. (1965). Handbook of Mathematical Functions. Dover, New York.
  • Ahumada, J.A., Hubbell, S.P., Condit, R.S. & Foster, R.B. (2004). Long-term tree survival in a Neotropical forest: the influence of local biotic neighborhood. In: Tropical Forest Diversity and Dynamism: Findings from a Large-scale Plot Network (eds Losos, E.C. & Leigh, E.G.Jr). University of Chicago Press, Chicago, IL, pp. 408432.
  • Alexeyev, V.L. & Levich, P. (1997). A search for maximum species abundances in ecological communities under conditional diversity optimization. Bull. Math. Biol., 59, 649677.
  • Allen, A.P., Li, B.-L. & Charnov, E.L. (2001). Population fluctuations, power laws and mixtures of lognormal distributions. Ecol. Lett., 4, 13.
  • Alonso, D., Etienne, R.P. & McKane, A.J. (2006). The merits of neutral theory. Trends Ecol. Evol., 21, 451457.
  • Azaele, S., Pigolotti, S., Banavar, J.R. & Maritan, M. (2006). Dynamical evolution of ecosystems. Nature, 444, 926928.
  • Caswell, H. (1976). Community structure: a neutral model analysis. Ecol. Monogr., 46, 327354.
  • Chave, J. (2004). Neutral theory and community ecology. Ecol. Lett., 7, 241253.
  • Chave, J., Muller-Landau, H.C. & Levin, S.A. (2002). Comparing classical community models: theoretical consequences for patterns of diversity. Am. Nat., 159, 123.
  • Dewdney, A.K. (1998). A general theory of the sampling process with applications to the ‘veil line’. Theor. Popul. Biol., 54, 294302.
  • Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., O'Malley, R.E. & Thomson, D. (1998). The statistical inevitability of stability–diversity relationships in community ecology. Am. Nat., 151, 264276.
  • Engen, S. & Lande, R. (1996a). Population-dynamic models generating the lognormal species abundance distribution. Math. Biosci., 132, 169183.
  • Engen, S. & Lande, R. (1996b). Population dynamic models generating species abundance distributions of the gamma type. J. Theor. Biol., 178, 325331.
  • Engen, S., Lande, R., Walla, T. & De Vries, P.J. (2002). Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. Am. Nat., 160, 6173.
  • Etienne, R.S. (2005). A new sampling formula for neutral biodiversity. Ecol. Lett., 8, 253260.
  • Etienne, R.S. & Alonso, D. (2005). A dispersal-limited sampling theory for species and allelles. Ecol. Lett., 8, 11471156.
  • Etienne, R.S. & Alonso, D. (2006). Neutral community theory: how stochasticity and dispersal-limitation can explain species coexistence. J. Stat. Phys., 128, 485510.
  • Etienne, R.S. & Olff, H. (2004). A novel genealogical approach to neutral biodiversity theory. Ecol. Lett., 7, 170175.
  • Etienne, R.S. & Olff, H. (2005). Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol. Lett., 8, 493504.
  • Etienne, R.S., Alonso, D. & McKane, A.J. (2007). The zero-sum assumption in neutral theory. J. Theor. Biol., doi: DOI: 10.1016/j.jtbi.2007.06.010.
  • Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol., 12, 4258.
  • Hernández, P.A., Graham, C.H., Master, L.L. & Albert, D.L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773785.
  • Hijmans, R.J. & Graham, C.H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol., 12, 22722281.
  • Hu, X.-S., He, F. & Hubbell, S.P. (2006). Neutral theory in population genetics and macroecology. Oikos, 113, 548556.
  • Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.
  • Hubbell, S.P., Ahumada, J.A., Condit, R.S. & Foster, R.B. (2001). Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol. Res., 16, 859875.
  • Jaynes, E.T. (1957). Information theory and statistical mechanics. Phys. Rev., 106, 620630.
  • Jaynes, E.T. (1968). Prior probabilities. IEEE T. Syst. Sci. Cyb., SSC-4, 227241.
  • Jaynes, E.T. (1973). The well-posed problem. Found. Phys., 3, 477493.
  • Jaynes, E.T. (2003). Probability Theory: The Logic of Science. Cambridge University Press, Cambridge.
  • John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M. et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl Acad. Sci. U.S.A., 104, 864869.
  • Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.
  • Levich, A.P. (2000). Variational modelling theorems and algocoenoses functioning principles. Ecol. Model, 131, 207227.
  • Luriè, D. & Wagensberg, J. (1983). On biomass diversity in ecology. Bull. Math. Biol., 45, 287293.
  • MacArthur, R. (1960). On the relative abundance of species. Am. Nat., 94, 2536.
  • Margalef, R. (1956). Información y diversidad específica en las comunidades de organismos. Invest. Pesq., 3, 99106.
  • Margalef, R. (1968). Perspectives in Ecological Theory. The University of Chicago Press, Chicago, IL.
  • Margalef, R. (1994). Through the looking glass: how marine phytoplankton appears through the microscope when graded by size and taxonomically sorted. Sci. Mar., 58, 87101.
  • May, R.M. (1975). Patterns of species abundance and diversity. In: Ecology and Evolution of Communities (eds Cody, M.L. & Diamond, J.M.). Harvard University Press, Cambridge, pp. 81120.
  • McGill, B.J. (2003a). Strong and weak tests of macroecological theory. Oikos, 102, 679685.
  • McGill, B.J. (2003b). A test of the unified neutral theory of biodiversity. Nature, 422, 881885.
  • McGill, B.J. (2006). A renaissance in the study of abundance. Science, 314, 770772.
  • McKane, A.J., Alonso, D. & Solé, R.V. (2000). Mean-field stochastic theory for species-rich assembled communities. Phys. Rev. E, 62, 84668484.
  • McKane, A.J., Alonso, D. & Solé, R.V. (2004). Analytic solution of Hubbell's model of local community dynamics. Theor. Popul. Biol., 65, 6773.
  • Motomura, I. (1932). A statistical treatment of associations [in Japanese]. Jpn. J. Zool., 44, 379383.
  • Mouquet, N. & Loreau, M. (2003). Community patterns in source–sink metacommunities. Am. Nat., 162, 544557.
  • Nekola, J.C. & Brown, J.H. (2007). The wealth of species: ecological communities, complex systems and the legacy of Frank Preston. Ecol. Lett., 10, 188196.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Magadascar. J. Biogeogr., 34, 102117.
  • Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model, 190, 231259.
  • Pielou, E.C. (1977). Mathematical Ecology, 2nd edn. John Wiley & Sons, New York.
  • Pueyo, S. (2006a). Diversity: between neutrality and structure. Oikos, 112, 392405.
  • Pueyo, S. (2006b). Self-similarity in species abundance distribution and in species–area relationship. Oikos, 112, 156162. [Errata in Oikos, 115, 582].
  • Shannon, C.E. (1948). The mathematical theory of communication. AT&T Tech. J., 27, 379423.
  • Shipley, B., Vile, D. & Garnier, E. (2006). From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812814.
  • Shore, J.E. & Johnson, R.W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inform. Theory, 26, 2637.
  • Solé, R.V., Alonso, D. & Saldaña, J. (2004). Habitat fragmentation and biodiversity collapse in neutral communities. Ecol. Complex, 1, 6575.
  • Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. U.S.A., 101, 1085410861.
  • Tokeshi, M. (1990). Niche apportionment or random assortment: species abundance patterns revisited. J. Anim. Ecol., 59, 11291146.
  • Vallade, M. & Houchmandzadeh, B. (2003). Analytical solution of a neutral model of biodiversity. Phys. Rev. E, 68, 061902.
  • Volkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 10351037.
  • Volkov, I., Banavar, J.R., He, F., Hubbell, S.P. & Maritan, A. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438, 658661.
  • Wagensberg, J., García, A. & Solé, R.V. (1991). Energy flow-networks and the maximum entropy formalism. In: Maximum Entropy and Bayesian Methods (eds Grandy, W.T.Jr & Schick, L.H.). Kluwer Academic Publishers, Dordrecht, pp. 253264.
  • Watterson, G.A. (1974). Models for the logarithmic species abundance distributions. Theor. Popul. Biol., 6, 217250.
  • Williamson, M. & Gaston, K.J. (2005). The lognormal distribution is not an appropriate null hypothesis for the species-abundance distribution. J. Anim. Ecol., 74, 409422.
  • Wills, C., Harms, K.E., Condit, R., King, D., Thompson, J., He, F. et al. (2006). Nonrandom processes maintain diversity in tropical forests. Science, 311, 527531.
  • Zillio, T. & Condit, R. (2007). The impact of neutrality, niche differentiation and species input on diversity and abundance distributions. Oikos, 116, 931940.