SEARCH

SEARCH BY CITATION

References

  • Aerts, R. & Chapin, F.S. III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res., 30, 167.
  • Allen, M.F., Swenson, W., Querejeta, J.I., Egerton-Warburton, L.M. & Treseder, K.K. (2003). Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu. Rev. Phytopathol., 41, 271303.
  • Amundson, R. (2001). The carbon budget in soils. Annu. Rev. Earth Planet. Sci., 29, 535562.
  • Arriaga, L. & Maya, Y. (2007). Spatial variability in decomposition rates in a desert scrub of Northwestern Mexico. Plant Ecol., 189, 213225.
  • Austin, A.T. & Vivanco, L. (2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442, 555558.
  • Bardgett, R.D. & Wardle, D.A. (2003). Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 22582268.
  • Bardgett, R.D., Streeter, T. & Bol, R. (2003). Soil microbes compete effectively with plants for organic nitrogen inputs to temperate grasslands. Ecology, 84, 12771287.
  • Bardgett, R.D., Bowman, W.D., Kaufmann, R. & Schmidt, S.K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol., 20, 634641.
  • Bardgett, R.D., Smith, R.S., Shiel, R.S., Peacock, S., Simkin, J.M., Quirk, H. et al. (2006). Parasitic plants indirectly regulate belowground properties in grassland ecosystems. Nature, 439, 969972.
  • De Boer, W., Folman, L.B., Summerbell, R.C. & Boddy, L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev., 29, 795811.
  • Bohlen, P.J., Scheu, S., Hale, C.M., McLean, M.A., Migge, S., Groffman, P.M. et al. (2004). Non-native invasive earthworms as agents of change in northern temperate forests. Front. Ecol. Evol. Environ., 2, 427435.
  • Bond, W.J., Woodward, F.I. & Midgley, G.F. (2005). The global distribution of ecosystems in a world without fire. New Phytol., 165, 525538.
  • Bunker, D.E., DeClerck, F., Bradford, J.C., Colwell, R.K., Perfecto, I., Phillips, O.L. et al. (2005). Species loss and aboveground carbon storage in a tropical forest. Science, 310, 10291031.
  • Chapin, F.S. (2003). Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann. Bot., 91, 455463.
  • Cleveland, C.C., Townsend, A.R., Schimel, D.S., Fisher, H., Howarth, R.W., Hedin, L.O. et al. (1999). Global patterns of terrestrial biological nitrogen (N-2) fixation in natural ecosystems. Global Biogeochem. Cycles, 13, 623645.
  • Cochrane, M.A. (2003). Fire science for rainforests. Nature, 421, 913919.
  • Cornelissen, J.H.C. & Thompson, K. (1997). Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol., 135, 109114.
  • Cornelissen, J.H.C., Aerts, R., Cerabolini, B., Werger, M.J.A. & Van Der Heijden, M.G.A. (2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129, 611619.
  • Cornelissen, J.H.C., Lang, S.I., Soudzilovskaia, N.A. & During, H.J. (2007a). Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot., 99, 9871001.
  • Cornelissen, J.H.C., Van Bodegom, P.M, Aerts, R., Callaghan, T.V., Van Logtestijn, R.S.P., Alatalo, J. et al. (2007b). Global negative feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett., 10, 619627.
  • Craine, J.M., Lee, W.G., Bond, W.J., Williams, R.J. & Johnson, L.C. (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 1219.
  • Davidson, E.A. & Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165173.
  • Diaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanovess, F., Milchunas, D.G. et al. (2006). Plant trait response to grazing – a global synthesis. Glob. Chang. Biol., 12, 129.
  • Dijkstra, F.A. & Cheng, W.X. (2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol. Lett., 10, 10461053.
  • Dijkstra, F.A., Hobbie, S.E. & Reich, P.B. (2006). Soil processes affected by sixteen grassland species grown under different environmental conditions. Soil Sci. Soc. Am. J., 70, 770777.
  • Eggleton, P. & Tayasu, I. (2001). Feeding groups, lifetypes and the global ecology of termites. Ecol. Res., 16, 941960.
  • Ehrenfeld, J.G., Ravit, B. & Elgersma, K. (2005). Feedback in the plant-soil system. Annu. Rev. Environ. Resour., 30, 75115.
  • Eviner, V.T. & Chapin, F.S. (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst., 34, 455485.
  • Fontaine, S. & Barot, S. (2005). Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol. Lett., 8, 10751087.
  • Gartner, T.B. & Cardon, Z.G. (2004). Decomposition dynamics in mixed-species leaf litter. Oikos, 104, 230246.
  • Van Groenigen, K.J., Six, J., Hungate, B.A., De Graaff, M.A., Van Breemen, N. & Van Kessel, C. (2006). Element interactions limit soil carbon storage. Proc. Natl. Acad. Sci. U.S.A., 103, 65716574.
  • Hättenschwiler, S. & Vitousek, P.M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol., 15, 238243.
  • Hättenschwiler, S., Tiunov, A.V. & Scheu, S. (2005). Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst., 36, 191218.
  • Van Der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T. et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 6972.
  • Van Der Heijden, M.G.A., Bardgett, R.D. & Van Straalen, N.M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett., 11, 296310.
  • Hobbie, S.E. (1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr., 66, 503522.
  • Högberg, M.N. & Högberg, P. (2002). Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol., 154, 791795.
  • Högberg, P. & Read, D.J. (2006). Towards a more plant physiological perspective on soil ecology. Trends Ecol. Evol., 21, 548554.
  • Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr., 75, 335.
  • Hunt, R. & Colasanti, R.L. (2007). Self-assembling plants and integration across ecological scales. Ann. Bot., 99, 10231034.
  • Inderjit & Weston, L.A. (2003). Root exudates: an overview. In: Root Ecology (eds De Kroon, H. & Visser, E.J.W.). Ecological Studies, 168. Springer, Berlin, pp. 235255.
  • Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E. & Schulze, E.D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389411.
  • Jobbagy, E.G. & Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10, 423436.
  • Johnson, M.T.J. & Stinchcombe, J.R. (2007). An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol., 22, 250257.
  • Kemp, P.R., Reynolds, J.F., Virginia, R.A. & Whitford, W.G. (2003). Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. J. Arid Envi., 53, 2129.
  • Kesselmeier, J., Ciccioli, P., Kuhn, U., Stefani, P., Biesenthal, T., Rottenberger, S. et al. (2002). Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem. Cycles, 16, 4, Art. no. 1156.
  • Kielland, K., McFarland, J. & Olson, K. (2006). Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant Soil, 288, 297307.
  • Kiers, E.T. & Van Der Heijden, M.G.A. (2006). Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology, 87, 16271636.
  • King, A.W., Post, W.M. & Wullschleger, S.D. (1997). The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Clim. Change, 35, 199227.
  • Kuzyakov, Y. (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem., 38, 425448.
  • Lambers, H., Scheurwater, I., Mata, C. & Nagel, O.W. (1998). Root respiration of fast- and slow-growing plants, as dependent on genotype and nitrogen supply: a major clue to the functioning of slow-growing plants. In: Inherent Variation in Plant Growth, Physiological Mechanisms and Ecological Consequences (eds Lambers, H., Poorter, H. & Van Vuren, M.). Backhuys Publishers, Leiden, pp. 139157.
  • Langley, J.A., Chapman, S.K. & Hungate, B.A. (2006). Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol. Lett., 9, 955959.
  • Lauenroth, W.K. & Gill, R. (2003). Turnover of root systems. In: Root Ecology (eds De Kroon, H. & Visser, E.J.W.). Ecological Studies, 168. Springer, Berlin, pp. 6189.
  • Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P. et al. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol., 33, 159193.
  • Lavorel, S., Díaz, S., Cornelissen, J.H.C., Garnier, E., Harrison, S.P., McIntyre, S. et al. (2007). Plant functional types: are we getting any closer to the Holy Grail? In: Terrestrial Ecosystems in a Changing World (eds Canadell, J., Pitelka, L.F. & Pataki, D.). Springer, Berlin, pp. 171186.
  • Lin, C., Owen, S.M. & Penuelas, J. (2007). Volatile organic compounds in the roots and rhizosphere of Pinus spp.. Soil Biol. Biochem., 39, 951960.
  • Lindahl, B.D., Ihrmark, K., Boberg, J., Trumbore, S.E., Högberg, P., Stenlid, J. et al. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol., 173, 611620.
  • Lorenz, K. & Lal, R. (2005). The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron., 88, 3566.
  • Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E. et al. (2007). SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem., 39, 21832207.
  • Mack, M.C., Schuur, E.A.G., Bret-Harte, M.S., Shaver, G.R. & Chapin, F.S. III (2004). Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440443.
  • Matamala, R., Gonzalez-Meler, M.A., Jastrow, J.D., Norby, R.J. & Schlesinger, W.H. (2003). Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302, 13851387.
  • Mayfield, M.M., Ackerly, D. & Daily, G.C. (2006). The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. J. Ecol., 94, 522536.
  • Mencuccini, M., Martinez-Vilalta, J., Hamid, H.A., Korakaki, E. & Vanderklein, D. (2007). Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol., 27, 463473.
  • Nilsson, M.C. & Wardle, D.A. (2005). Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ., 3, 421428.
  • Ogle, K. & Reynolds, J.F. (2004). Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia, 141, 282294.
  • Olff, H., Vera, F.W.M., Bokdam, J., Bakker, E.S., Gleichman, J.M., De Maeyer, K. et al. (1999). Shifting mosaics in grazed woodlands driven by the alternation of plant facilitation and competition. Plant Biol., 1, 127137.
  • Owen, K.E., Tenhunen, J., Reichsten, M., Wang, Q., Falge, E., Geyer, R. et al. (2007). Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Glob. Chang. Biol., 13, 734760.
  • Personeni, E. & Loiseau, P. (2004). How does the nature of living and dead roots affect the residence time of carbon in the root litter continuum? Plant Soil, 267, 129141.
  • Pollierer, M.M., Langel, R., Korner, C., Maraun, M. & Scheu, S. (2007). The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett., 10, 729736.
  • Porazinska, D.L., Bardgett, R.D., Blaauw, M.B., Hunt, W.H., Parsons, A., Seastedt, T.R. et al. (2003). Relationships at the aboveground-belowground interface: plants, soil microflora and microfauna, and soil processes. Ecol. Monogr., 73, 377395.
  • Pregitzer, K.S., Burton, A.J., Zak, D.R. & Talhelm, A.F. (2008). Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Glob. Chang. Biol., 14, 142153.
  • Prentice, I.C., Cramer, W., Harisson, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. (1992). A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr., 19, 117134.
  • Preston, C.M. & Schmidt, M.W.I. (2006). Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences, 3, 397420.
  • Quested, H.M., Press, M.C. & Callaghan, T.V. (2003). Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia, 135, 606614.
  • Read, D.J. & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol., 157, 475492.
  • Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M. et al. (2005). Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol. Lett., 8, 811818.
  • Rillig, M.C. & Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytol., 171, 4153.
  • Rustad, L.E. (2006). From transient to steady-state response of ecosystems to atmospheric CO2-enrichment and global climate change: conceptual challenges and need for an integrated approach. Plant Ecol., 182, 4362.
  • Santiago, L.S. & Wright, S.J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Funct. Ecol., 21, 1927.
  • Schenk, H.J. & Jackson, R.B. (2002a). The global biogeography of roots. Ecol. Monogr., 72, 311328.
  • Schenk, H.J. & Jackson, R.B. (2002b). Rooting depths, lateral spreads, and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol., 90, 480494.
  • Schieving, F. & Poorter, H. (1999). Carbon gain in a multipsecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytol., 143, 201211.
  • Schimel, J.P. & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591602.
  • Schulze, E.D. (2006). Biological control of the terrestrial carbon sink. Biogeosciences, 3, 147166.
  • Silver, W.L. & Miya, R.K. (2001). Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129, 407419.
  • Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W. et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol., 9, 161185.
  • Six, J., Frey, S.D., Thiet, R.K. & Batten, K.M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J., 70, 555569.
  • Smith, S.E. & Read, D.J. (1997). Mycorrhizal Symbiosis, 2nd edn. Cambridge University Press, London.
  • Steinmann, K.T.W., Siegwolf, R., Saurer, M. & Korner, C. (2004). Carbon fluxes to the soil in a mature temperate forest assessed by C-13 isotope tracing. Oecologia, 141, 489501.
  • Striker, G.G., Insausti, P., Grimoldi, A.A. & Vega, A.S. (2007). Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ., 30, 580589.
  • Ström, L., Ekberg, A., Mastepanov, M. & Christensen, T.R. (2003). The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob. Chang. Biol., 9, 11851192.
  • Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A. et al. (2006). Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444447.
  • Tjoelker, M.G., Craine, J.M., Wedin, D., Reich, P.B. & Tilman, D. (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol., 167, 493508.
  • Vessey, J.K., Pawlowski, K. & Bergman, B. (2005). Root-based N-2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil, 274, 5178.
  • Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. et al. (2007). Let the concept of trait be functional!. Oikos, 116, 882892.
  • Waldrop, M.P. & Zak, D.R. (2006). Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems, 9, 921933.
  • Wallander, H., Nilsson, L.O., Hagerberg, D. & Rosengren, U. (2003). Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol. Biochem., 35, 997999.
  • Wardle, D.A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc., 67, 321358.
  • Wardle, D.A. (2006). The influence of biotic interactions on soil biodiversity. Ecol. Lett., 9, 870886.
  • Wardle, D.A. & Zackrisson, O. (2005). Effects of species and functional group loss on island ecosystem properties. Nature, 435, 806810.
  • Wardle, D.A., Barker, G.M., Bonner, K.I. & Nicholson, K.S. (1998). Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J. Ecol., 86, 405420.
  • Warembourg, F.R., Roumet, C. & Lafont, F. (2003). Differences in rhizosphere carbon-partitioning among plant species of different families. Plant Soil, 256, 347357.
  • Whitham, T.G., Bailey, J.K., Schweitzer, J.A., Shuster, S.M., Bangert, R.K., Leroy, C.J. et al. (2006). A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet., 7, 510523.
  • Woodward, F.I., Lomas, M.R. & Kelly, C.K. (2004). Global climate and the distribution of plant biomes. Proc. R. Soc. Lond., B, Biol. Sci., 359, 14651476.
  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821827.
  • Zak, D.R., Blackwood, C.B. & Waldrop, M.P. (2006). A molecular dawn for biogeochemistry. Trends Ecol. Evol., 21, 288295.
  • Zepp, R.G., Erickson, D.J., Paul, N.D. & Sulzberger, B. (2007). Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci., 6, 286300.