SEARCH

SEARCH BY CITATION

References

  • Adams, E.S. (2001). Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst., 32, 277303.
  • Bell, W.J. (1991). Searching Behaviour. Chapman and Hall, London.
  • Benhamou, S. (1989). An olfactory orientation model for mammal movements in their home ranges. J. Theor. Biol., 139, 379388.
  • Benhamou, S. (1994). Spatial memory and searching efficiency. Anim. Behav., 47, 14231433.
  • Benhamou, S. (1997). On systems of reference involved in spatial memory. Behav. Processes, 40, 149163.
  • Benhamou, S. (2006). Detecting an orientation component in animal paths when the preferred direction is individual-dependent. Ecology, 87, 518528.
  • Benichou, O., Loverdo, C., Moreau, M. & Voituriez, R. (2007). A minimal model of intermittent search in dimension two. J. Phys. Condens. Matter, 19, 117.
  • Blackwell, P.G. (1997). Random diffusion models for animal movement. Ecol. Modell., 100, 87102.
  • Blackwell, P.G. (2003). Bayesian inference for Markov processes with diffusion and discrete components. Biometrika, 90, 613627.
  • Börger, L., Franconi, N., De Michele, G., Gantz, A., Meschi, F., Manica, A. et al. (2006a). Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol., 75, 13931405.
  • Börger, L., Franconi, N., Ferretti, F., Meschi, F., De Michele, G., Gantz, A. et al. (2006b). An integrated approach to identify spatio-temporal and individual-level determinants of animal home range size. Am. Nat., 168, 471485.
  • Bovet, P. & Benhamou, S. (1988). Spatial analysis of animal movements using a correlated random walk model. J. Theor. Biol., 131, 419433.
  • Bovet, P. & Benhamou, S. (1991). Optimal sinuosity in central place foraging movements. Anim. Behav., 42, 5762.
  • Briscoe, B.K., Lewis, M.A. & Parrish, S.E. (2002). Home range formation in wolves due to scent marking. Bull. Math. Biol., 64, 261284.
  • Brown, J.L. & Orians, G.H. (1970). Spacing patterns in mobile animals. Annu. Rev. Ecol. Syst., 1, 239262.
  • Burt, W.H. (1943). Territoriality and home range concepts as applied to mammals. J. Mammal., 24, 346352.
  • Byrne, P., Becker, S. & Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev., 114, 340375.
  • Challet, M., Fourcassie, V., Blanco, S., Fournier, R., Theraulaz, G. & Jost, C. (2005). A new test of random walks in heterogeneous environments. Naturwissenschaften, 92, 367370.
  • Cooper, W.E.J. (1978). Home range criteria based on temporal stability of areal occupation. J. Theor. Biol., 73, 687695.
  • Coscoy, S., Huguet, E. & Amblard, F. (2007). Statistical analysis of sets of random walks: how to resolve their generating mechanism. Bull. Math. Biol., 69, 24672492.
  • Cuthill, I.C. & Houston, A.I. (1997). Managing time and energy. In: Behavioural Ecology (eds Krebs, C.J. & Davies, N.B.). Blackwell Science, Cambridge, pp. 97120.
  • Dalziel, B.D., Morales, J.M. & Fryxell, J.M. (2008). Fitting probability distributions to animal movement trajectories: using artificial neural networks to link distance, resources, and memory. Am. Nat. (in press).
  • Darwin, C. (1861). On the Origin of Species by Means of Natural Selection, 3rd edn. Murray, London.
  • Davies, N.B. & Houston, A.I. (1984). Territory economics. In: Behavioural Ecology. An Evolutionary Approach (eds Krebs, J.R. & Davies, N.B.). Blackwell Science, Oxford, pp. 148169.
  • Dixon, K.R. & Chapman, J.A. (1980). Harmonic mean measure of animal activity areas. Ecology, 61, 10401044.
  • Don, B.A.C. & Rennolls, K. (1983). A home range model incorporating biological attraction points. J. Anim. Ecol., 52, 6981.
  • Dunn, J.E. & Gipson, P.S. (1977). Analysis of radiotelemetry data in studies of home range. Biometrics, 33, 85101.
  • Edwards, A.M., Phillips, R.A., Watkins, N.W., Freeman, M.P., Murphy, E.J., Afanasyev, V. et al. (2007). Revisiting Levy flight search patterns of wandering albatrosses, bumblebees and deer. Nature, 449, 10441048.
  • Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 322, 549560.
  • Fagan, W.F., Lutscher, F. & Schneider, K. (2007). Population and community consequences of spatial subsidies derived from central-place foraging. Am. Nat., 170, 902915.
  • Fieberg, J. (2007). Kernel density estimators of home range: smoothing and the autocorrelation red herring. Ecology, 88, 10591066.
  • Fletcher, R.J. (2007). Species interactions and population density mediate the use of social cues for habitat selection. J. Anim. Ecol., 76, 598606.
  • Ford, R.G. (1983). Home range in a patchy environment – optimal foraging predictions. Am. Zool., 23, 315326.
  • Forester, J.D., Ives, A.R., Turner, M.G., Anderson, D.P., Fortin, D., Beyer, H.L. et al. (2007). State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol. Monogr., 77, 285299.
  • Fryxell, J.M. & Doucet, C.M. (1991). Provisioning time and central-place foraging in beavers. Can. J. Zool. Rev. Can. Zool., 69, 13081313.
  • Gautestad, A.O. & Mysterud, I. (2005). Intrinsic scaling complexity in animal dispersion and abundance. Am. Nat., 165, 4455.
  • Getty, T. (1981). Analysis of central-place space-use patterns – the elastic disc revisited. Ecology, 62, 907914.
  • Getz, W.M., Fortmann-Roe, S., Cross, P.C., Lyons, A.J., Ryan, S.J. & Wilmers, C.C. (2007). LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE, 2, e207.
  • Gillis, J. (1956). Centrally biased discrete random walk. Q. J. Math. (2), 7, 144152.
  • Giuggioli, L., Abramson, G., Kenkre, V.M., Parmenter, R.R. & Yates, T.L. (2006). Theory of home range estimation from displacement measurements of animal populations. J. Theor. Biol., 240, 126135.
  • Grant, J.W.A., Chapman, C.A. & Richardson, K.S. (1992). Defended versus undefended home range size of carnivores, ungulates and primates. Behav. Ecol. Sociobiol., 31, 149161.
  • Grunbaum, D. (1999). Advection–diffusion equations for generalized tactic searching behaviors. J. Math. Biol., 38, 169194.
  • Haydon, D.T., Morales, J.M., Yott, A., Jenkins, D.A., Rosatte, R. & Fryxell, J. (2008). Socially-informed random walks: incorporating group dynamics into models of population spread and growth. Proc. R. Soc. B Biol. Sci., 275, 11011109.
  • Hills, T.T. (2006). Animal foraging and the evolution of goal-directed cognition. Cogn. Sci., 30, 341.
  • Holgate, P. (1971). Random walk models for animal behavior. In: Statistical Ecology: Sampling and Modeling Biological Populations and Population Dynamics (eds Patil, G., Pielou, E. & Walters, W.). Penn State University Press, University Park, PA, pp. 172.
  • Horne, J.S. & Garton, E.O. (2006). Selecting the best home range model: an information-theoretic approach. Ecology, 87, 11461152.
  • Horne, J.S., Garton, E.O. & Rachlow, J.L. (2008). A synoptic model of animal space use: Simultaneous estimation of home range, habitat selection, and inter/intra-specific relationships. Ecol. Modell. (in press).
  • Huxley, J.S. (1934). A natural experiment on the territorial instinct. Br. Birds, 27, 270277.
  • Jackson, J. & Redish, A.D. (2007). Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks. Hippocampus, 17, 12091229.
  • Janson, C.H. & Byrne, R. (2007). What wild primates know about resources: opening up the black box. Anim. Cogn., 10, 357367.
  • Jetz, W., Carbone, C., Fulford, J. & Brown, J.H. (2004). The scaling of animal space use. Science, 306, 266268.
  • Jonsen, I.D., Myers, R.A. & Flemming, J.M. (2003). Meta-analysis of animal movement using state-space models. Ecology, 84, 30553063.
  • Kenkre, V.M., Giuggioli, L., Abramson, G. & Camelo-Neto, G. (2007). Theory of hantavirus infection spread incorporating localized adult and itinerant juvenile mice. Eur. Phys. J. B, 55, 461470.
  • Kernohan, B.J., Gitzen, R.A. & Millspaugh, J.J. (2001). Analysis of animal space use and movements. In: Radiotracking and Animal Populations (eds Millspaugh, J.J. & Marzluff, J.M.). Academic Press, San Diego, pp. 126166.
  • Kjellander, P., Hewison, A.J.M., Liberg, O., Angibault, J.M., Bideau, E. & Cargnelutti, B. (2004). Experimental evidence for density-dependence of home-range size in roe deer (Capreolus capreolus, L.): a comparison of two long-term studies. Oecologia, 139, 478485.
  • Laver, P.N. & Kelly, M.J. (2008). A critical review of home range studies. J. Wildl. Manage., 72, 290298.
  • Lewis, M.A. & Moorcroft, P. (2001). ESS analysis of mechanistic models for territoriality: the value of scent marks in spatial resource partitioning. J. Theor. Biol., 210, 449461.
  • Lewis, M.A. & Murray, J.D. (1993). Modeling territoriality and wolf deer interactions. Nature, 366, 738740.
  • Lewis, M.A., White, K.A.J. & Murray, J.D. (1997). Analysis of a model for wolf territories. J. Math. Biol., 35, 749774.
  • Madras, N. & Slade, G. (1993). The Self-Avoiding Walk. Birkhäuser, Boston.
  • Maher, C.R. & Lott, D.F. (1995). Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav., 49, 15811597.
  • Matthiopoulos, J. (2003). The use of space by animals as a function of accessibility and preference. Ecol. Modell., 159, 239268.
  • McNamara, J.M. & Houston, A.I. (1985). Optimal foraging and learning. J. Theor. Biol., 117, 231249.
  • McNamara, J.M., Green, R.F. & Olsson, O. (2006). Bayes’ theorem and its applications in animal behaviour. Oikos, 112, 243251.
  • Mitchell, M.S. & Powell, R.A. (2004). A mechanistic home range model for optimal use of spatially distributed resources. Ecol. Modell., 177, 209232.
  • Mitchell, M.S. & Powell, R.A. (2007). Optimal use of resources structures home ranges and spatial distribution of black bears. Anim. Behav., 74, 219230.
  • Moorcroft, P. & Barnett, A. (2008). Mechanistic home range models and resource selection analysis: a reconciliation and unification. Ecology (in press).
  • Moorcroft, P.R. & Lewis, M.A. (2006). Mechanistic Home Range Analysis. Princeton University Press, Princeton.
  • Moorcroft, P.R., Lewis, M.A. & Crabtree, R.L. (1999). Home range analysis using a mechanistic home range model. Ecology, 80, 16561665.
  • Moorcroft, P.R., Lewis, M.A. & Crabtree, R.L. (2006). Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proc. R Soc. B Biol. Sci., 273, 16511659.
  • Moorhouse, T.P. & Macdonald, D.W. (2005). Temporal patterns of range use in water voles: do females’ territories drift? J. Mammal., 86, 655661.
  • Morales, J.M., Haydon, D.T., Frair, J., Holsiner, K.E. & Fryxell, J.M. (2004). Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology, 85, 24362445.
  • Morrell, L.J. & Kokko, H. (2005). Bridging the gap between mechanistic and adaptive explanations of territory formation. Behav. Ecol. Sociobiol., 57, 381390.
  • Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. Springer Verlag, Heidelberg, Berlin, New York.
  • Okubo, A. & Levin, S. (2001). Diffusion and Ecological Problems: Modern Perspectives, 2nd edn. Springer-Verlag, Berlin.
  • Paraan, F.N.C. & Esguerra, J.P. (2006). Exact moments in a continuous time random walk with complete memory of its history. Phys. Rev. E, 74, 14.
  • Patlak, C.S. (1953a). A mathematical contribution to the study of orientation of organisms. Bull. Math. Biophys., 15, 431476.
  • Patlak, C.S. (1953b). Random walk with persistence and external bias. Bull. Math. Biophys., 15, 311338.
  • Pearson, K. (1905). The problem of the random walker. Nature, 72, 294.
  • Pittman, S.J. & McAlpine, C.A. (2003). Movements of marine fish and decapod crustaceans: Process, theory and application. Adv. Mar. Biol., 44, 205294.
  • Powell, R.A. (2000). Animal home ranges and territories and home range estimators. In: Research Techniques in Animal Ecology. Controversies and Consequences (eds Boitani, L. & Fuller, T.K.). Columbia University Press, New York, pp. 65110.
  • Powell, R.A., Zimmerman, J.W. & Seaman, D.E. (1997). Ecology and Behaviour of North American Black Bears: Home Ranges, Habitat, and Social Organization. Chapman & Hall, London.
  • Rhodes, J.R., McAlpine, C.A., Lunney, D. & Possingham, H.P. (2005). A spatially explicit habitat selection model incorporating home range behavior. Ecology, 86, 11991205.
  • Sapozhnikov, V.B. (1994). Self-attracting walk with V-less-than-1/2. J. Phys. A Math. Gen., 27, L151L153.
  • Sapozhnikov, V.B. (1998). Reply to the comment by J W Lee. Self-attracting walk: are the exponents universal?. J. Phys. A Math. Gen., 31, 39353936.
  • Schmitt, F.G., Seuront, L., Hwang, J.S., Souissi, S. & Tseng, L.C. (2006). Scaling of swimming sequences in copepod behavior: data analysis and simulation. Physica A, 364, 287296.
  • Schutz, G.M. & Trimper, S. (2004). Elephants can always remember: exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E, 70, 4.
  • Da Silva, M.A.A., Cressoni, J.C. & Viswanathan, G.M. (2006). Discrete-time non-Markovian random walks: the effect of memory limitations on scaling. Physica A, 364, 7078.
  • Siniff, D.B. & Jessen, C.R. (1969). A simulation model of animal movement patterns. Adv. Ecol. Res., 6, 185217.
  • Skellam, J.G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196218.
  • Solow, A.R. (1990). A note on the statistical properties of animal locations. J. Math. Biol., 29, 189193.
  • South, A. (1999). Extrapolating from individual movement behaviour to population spacing patterns in a ranging mammal. Ecol. Modell., 117, 343360.
  • Spencer, S.R., Cameron, G.N. & Swihart, R.K. (1990). Operationally defining home range – temporal dependence exhibited by hispid cotton rats. Ecology, 71, 18171822.
  • Stamps, J. (1995). Motor learning and the value of familiar space. Am. Nat., 146, 4158.
  • Stamps, J.A. & Krishnan, V.V. (1999). A learning-based model of territory establishment. Q. Rev. Biol., 74, 291318.
  • Stephens, D.W. & Krebs, J.R. (1986). Foraging Theory. Princeton University Press, Princeton.
  • Switzer, P.V. (1993). Site fidelity in predictable and unpredictable habitats. Evol. Ecol., 7, 533555.
  • Tan, Z.J., Zou, X.W., Zhang, W. & Jin, Z.Z. (2001). ‘True’ self-attracting walk. Phys. Lett. A, 289, 251254.
  • Tan, Z.J., Zou, X.W., Huang, S.Y., Zhang, W. & Jin, Z.Z. (2002). Random walk with memory enhancement and decay. Phys. Rev. E, 65, 15.
  • Turchin, P. (1998). Quantitative Analysis of Movement. Sinauer Associates, Inc., Publishers, Sunderland, MA.
  • Wang, M. & Grimm, V. (2007). Home range dynamics and population regulation: an individual-based model of the common shrew Sorex ayaneus. Ecol. Modell., 205, 397409.
  • Wehner, R. (1997). Sensory systems and behaviour. In: Behavioural Ecology (eds Krebs, J.R. & Davies, N.B.). Blackwell Science, Cambridge, pp. 1941.
  • Weimerskirch, H. (2007). Are seabirds foraging for unpredictable resources? Deep-Sea Res. Part II Top. Stud. Oceanogr., 54, 211223.
  • White, G.W. & Garrot, R.A. (1990). Analysis of Wildlife Radiotracking Data. Academic Press, San Diego.
  • White, K.A.J., Lewis, M.A. & Murray, J.D. (1996). A model for wolf-pack territory formation and maintenance. J. Theor. Biol., 178, 2943.
  • Worton, B.J. (1987). A review of models of home range for animal movement. Ecol. Modell., 38, 277298.
  • Zhang, X.X., Johnson, S.N., Crawford, J.W., Gregory, P.J. & Young, I.M. (2007). A general random walk model for the leptokurtic distribution of organism movement: theory and application. Ecol. Modell., 200, 7988.