Get access

Diversity and disease: community structure drives parasite transmission and host fitness




Changes in host diversity and community structure have been linked to disease, but the mechanisms underlying such relationships and their applicability to non-vector-borne disease systems remain conjectural. Here we experimentally investigated how changes in host community structure affected the transmission and pathology of the multi-host parasite Ribeiroia ondatrae, which is a widespread cause of amphibian limb deformities. We exposed larval amphibians to parasites in monospecific or heterospecific communities, and varied host number to differentiate between density- and diversity-mediated effects on transmission. In monospecific communities, exposure to Ribeiroia significantly increased mortality (15%), malformations (40%) and time-to-metamorphosis in toads. However, the presence of tree frogs significantly reduced infection in toads, leading to fewer malformations and higher survival than observed in monospecific communities, providing evidence of parasite-mediated facilitation. Our results suggest that interspecific variation in parasite resistance can inhibit parasite transmission in multi-species communities, reducing infection and pathology in sensitive hosts.

Get access to the full text of this article