SEARCH

SEARCH BY CITATION

References

  • Aerts, R. & Chapin, F.S. (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res., 30, 167.
  • Allen, M.F. (1991). The Ecology of Mycorrhizae. Cambridge University Press, Cambridge.
  • Allison, S.D., Hanson, C.A. & Treseder, K.K. (2007). itrogen fertilization reduces diversity and alters community structures of active fungi in boreal ecosystems. Soil Biol. Biochem., 2007, 18781887.
  • Ander, P. & Eriksson, K.-E. (1977). Selective degradation of wood components by white-rot fungi. Physiol. Plant., 41, 239248.
  • Arnolds, E. (1988). The changing macromycete flora in the Netherlands. Trans. Br. Mycolog. Soc., 90, 391406.
  • Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ., 35, 209244.
  • Baath, E., Lundgren, B. & Soderstrom, B. (1981). Effects of nitrogen fertilization on the activity and biomass of fungi and bacteria in a podzolic soil. Zentralblatt für Bakteriologie und Hygiene, I. Abt. Orig. C, 2, 9098.
  • Biederbeck, V.O., Campbell, C.A. & Zentner, R.P. (1984). Effect of crop rotation and fertilization on some biological properties of a loam in southwestern Saskatchewan. Can. J. Soil. Sci., 64, 355367.
  • Bollen, W.B. & Lu, K.C. (1961). Microbial decomposition and nitrogen availability of reacted sawdust, bagasse and coffee grounds. J. Agric. Food Chem., 9, 915.
  • Broadbent, F.E. (1965). Effects of fertilizer nitrogen on the release of soil nitrogen. Soil Sci. Soc. Am. J, 29, 692696.
  • Brookes, P.C., Landman, A., Pruden, G. & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 17, 837842.
  • Bruns, M.A., Stephen, J.R., Kowalchuk, G.A., Prosser, J.I. & Paul, E.A. (1999). Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl. Environ. Microbiol., 65, 29943000.
  • Chapin, F.S.I., Vitousek, P.M. & Van Cleve, K. (1986). The nature of nutrient limitation in plant communities. Am. Nat., 127, 4858.
  • Collins, H.P., Rasmussen, P.E. & Douglas, C.L. (1992). Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Sci. Soc. Am. J., 56, 783788.
  • Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev., 60, 609.
  • DeForest, J.L., Zak, D.R., Pregitzer, K.S. & Burton, A.J. (2004). Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci. Soc. Am. J., 68, 132138.
  • Demoling, F., Figueroa, D. & Baath, E. (2007). Comparison of factors limiting bacterial growth in different soils. Soil Biol. Biochem., 39, 24852495.
  • Demoling, F., Nilsson, L.O. & Baath, E. (2008). Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol. Biochem., 40, 370379.
  • Deng, S.P., Parham, J.A., Hattey, J.A. & Babu, D. (2006). Animal manure and anhydrous ammonia amendment alter microbial carbon use efficiency, microbial biomass, and activities of dehydrogenase and amidohydrolases in semiarid agroecosystems. Appl. Soil Ecol., 33, 258268.
  • Dighton, J. (2003). Fungi in Ecosystem Processes. Marcel Dekker, New York.
  • Eiland, F. (1983). A simple method for quantitative determination of ATP in soil. Soil Biol. Biochem., 15, 665670.
  • Fenchel, T., King, G.M. & Blackburn, H. (1998). Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 2nd edn. Academic Press, London, UK.
  • Fierer, N., Jackson, J.A., Vilgalys, R. & Jackson, R.B. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol., 71, 41174120.
  • Fog, K. (1988). The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev. Cambridge Philosophic. Soc., 63, 433462.
  • Frey, S.D., Knorr, M., Parrent, J.L. & Simpson, R.T. (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manage., 196, 159171.
  • Frostegard, A. & Baath, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils, 22, 5965.
  • Gallo, M., Amonette, R., Lauber, C., Sinsabaugh, R.L. & Zak, D.R. (2004). Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb. Ecol., 48, 218229.
  • Gurevitch, J. & Hedges, L.V. (1999). Statistical issues in ecological meta-analyses. Ecology, 80, 11421149.
  • Haider, K. & Martin, J.P. (1967). Synthesis and transformation of phenolic compounds by Epicoccum nigrum in relation to humic acid formation. Proc. Soil Sci. Soc. Am., 31, 766772.
  • Hammel, K.E. (1997). Fungal Degradation of Lignin. Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford , pp. 3346.
  • Hedges, L.V., Gurevitch, J. & Curtis, P.S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 11501156.
  • Hobbie, S.E. (2005). Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems, 8, 644656.
  • Hodge, J.E. (1953). Chemistry of browning reactions in model systems. J. Agric. Food. Chem., 1, 928943.
  • Holland, E.A., Braswell, B.H., Sulzman, J.M. & Lamarque, J.F. (2005). Nitrogen Deposition onto the United States and Western Europe. Dataset available at: http://www.daac.ornl.gov, doi: DOI: 10.3334/ORNLDAAC/730. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN. Accessed May 26, 2008.
  • Horz, H.P., Barbrook, A., Field, C.B. & Bohannan, B.J.M. (2004). Ammonia-oxidizing bacteria respond to multifactorial global change. Proc. Natl Acad. Sci. U.S.A., 101, 1513615141.
  • Jonsson, L., Anders, D. & Tor-Erik, B. (2000). Spatiotemporal distribution of an ectomycorrhizal community in an oligotrophic Swedish Picea abies forest subjected to experimental nitrogen addition: above- and below-ground views. For. Ecol. Manage, 132, 143156.
  • Karen, O. & Nylund, J.E. (1997). Effects of ammonium sulfate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can. J. Bot., 75, 16281642.
  • Keyser, P., Kirk, T.K. & Zeikus, J.G. (1978). Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J. Bacteriol., 135, 790797.
  • Knorr, M., Frey, S.D. & Curtis, P.S. (2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 32523257.
  • LeBauer, D.S. & Treseder, K.K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371379.
  • Lilleskov, E.A. & Bruns, T.D. (2001). Nitrogen and ectomycorrhizal fungal communities: what we know, what we need to know. New Phytol., 149, 154158.
  • Lilleskov, E.A., Fahey, T.J. & Lovett, G.M. (2001). Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecol. Appl., 11, 397410.
  • Lilleskov, E.A., Fahey, T.J., Horton, T.R. & Lovett, G.M. (2002). Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 83, 104115.
  • Lucas, R.W., Casper, B.B., Jackson, J.K. & Balser, T.C. (2007). Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands. Soil Biol. Biochem., 39, 25082519.
  • Malherbe, S. & Cloete, T.E. (2002). Lignocellulose biodegradation: fundamentals and applications. Rev. Environ. Sci. Biotechnol., 1, 105114.
  • Mangenot, F. & Reymond, J. (1963). Populations microbiennes de bois. V. Influence de quelques sources de carbone et d’azote sur la decomposition d’une sciure. Rev. Gen. Bot., 70, 107129.
  • McAndrew, D.W. & Malhi, S.S. (1992). Long-term N fertilization of a Solonetzic soil – effects on chemical and biological properties. Soil Biol. Biochem., 24, 619623.
  • McNulty, S.G. & Aber, J.D. (1993). Effects of chronic nitrogen additions on nitrogen cycling in a high elevation spruce-fir stand. Can. J. For. Research, 23, 12521263.
  • Nilsson, L.O. & Wallander, H. (2003). Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol., 158, 409416.
  • Nilsson, L.O., Baath, E., Falkengren-Grerup, U. & Wallander, H. (2007). Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia, 153, 375384.
  • Nohrstedt, H.O., Arnebrant, K., Baath, E. & Soderstrom, B. (1989). Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen fertilized pine forest soils in Sweden. Can. J. For. Res., 19, 323328.
  • Paul, E.A. & Clark, F.E. (1996). Soil Microbiology and Biochemistry, 2nd edn. Academic Press, San Diego, CA.
  • Paustian, K. & Schnurer, J. (1987). Fungal growth response to carbon and nitrogen limitation – application of a model to laboratory and field data. Soil Biol. Biochem., 19, 621629.
  • Peter, M., Ayer, F. & Egli, S. (2001). Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytol., 149, 311325.
  • Read, D.J. (1991). Mycorrhizas in ecosystems – nature’s response to the “Law of the minimum”. In: Frontiers in Mycology (ed. Hawksworth, D.L.). CAB International, Regensburg, pp. 101130.
  • Reich, P. & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. U.S.A., 101, 1100111006.
  • Rosenberg, M.S., Adams, D.C. & Gurevitch, J. (2000). MetaWin: Statistical Software for Meta-analysis. Sinauer Associates, Sunderland.
  • Scheu, S. (1990). Changes in microbial nutrient status during secondary succession and its modification by earthworms. Oecologia, 84, 351358.
  • Schimel, J.P. & Weintraub, M.N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem., 35, 549563.
  • Shoun, H., Kim, D.H., Uchiyama, H. & Sugiyama, J. (1992). Denitrification by fungi. FEMS Microbiol. Lett., 94, 277281.
  • Siguenza, C., Crowley, D.E. & Allen, E.B. (2006). Soil microorganisms of a native shrub and exotic grasses along a nitrogen deposition gradient in southern California. Appl. Soil Ecol., 32, 1326.
  • Sinsabaugh, R.L. & Linkins, A.E. (1989). Cellulase mobility in decomposing leaf litter. Soil Biol. Biochem., 21, 205209.
  • Soderstrom, B., Baath, E. & Lundgren, B. (1983). Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Can. J. Microbiol., 29, 15001506.
  • Sokal, R.R. & Rohlf, F.J. (1995). Biometry, 3rd edn. W. H. Freeman and Company, New York.
  • Stapleton, L.M., Crout, N.M.J., Sawstrom, C., Marshall, W.A., Poulton, P.R., Tye, A.M. et al. (2005). Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing. Soil Biol. Biochem., 37, 20882098.
  • Stevens, C.J., Dise, N.B., Mountford, J.O. & Gowing, D.J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 18761879.
  • Suding, K.N., Collins, S.L., Gough, L., Clark, C., Cleland, E.E., Gross, K.L. et al. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. U.S.A., 102, 43874392.
  • Swift, M.J., Heal, O.W. & Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkley.
  • Tingey, D.T., Phillips, D.L., Johnson, M.G., Storm, M.J. & Ball, J.T. (1997). Effects of elevated CO2 and N fertilization on fine-root dynamics and fungal growth in seedling Pinus ponderosa. Environ. Exp. Bot., 37, 7383.
  • Treseder, K.K. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol., 164, 347355.
  • Treseder, K.K., Allen, M.F., Ruess, R.W., Pregitzer, K.S. & Hendrick, R.L. (2005). Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland. Plant Soil, 270, 249255.
  • Vance, E.D. & Chapin, F.S. (2001). Substrate limitations to microbial activity in taiga forest floors. Soil Biol. Biochem., 33, 173188.
  • Vishnevetsky, S. & Steinberger, Y. (1996). Desert system microbial biomass determined by phospholipid phosphate and muramic acid measurement. Land Degrad. Develop., 7, 257267.
  • Vitousek, P.M. & Howarth, R.W. (1991). Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 13, 87115.
  • Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W. et al. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl., 7, 737750.
  • Vogt, K.A., Publicover, D.A. & Vogt, D.J. (1991). A critique of the role of ectomycorrhizas in forest ecology. Agric. Ecosyst. Environ., 35, 171190.
  • Waksman, S.A. & Tenney, F.G. (1927). The composition of natural organic materials and their decomposition in the soil: II influence of age of plant upon the rapidity and nature of its decomposition – rye plants. Soil Sci., 24, 317333.
  • Waldrop, M.P. & Zak, D.R. (2006). Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems, 9, 921933.
  • Walker, T.W. & Syers, J.K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 119.
  • Wallenda, T. & Kottke, I. (1998). Nitrogen deposition and ectomycorrhizas. New Phytol., 139, 169187.
  • Wardle, D.A. (1992). A comparative assessment of factors which influence microbial biomass, carbon, and nitrogen levels in soil. Biol. Rev. Cambridge Philosophic. Soc., 67, 321358.