SEARCH

SEARCH BY CITATION

References

  • Aerts, R. & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 6369.
  • Alvin, K.L. (1982). Cheirolepidiaceae: biology, structure and paleoecology. Rev. Paleobot. Palyn., 37, 5570.
  • Axelrod, D.I. (1970). Mesozoic paleogeography and early angiosperm history. Bot. Rev., 36, 277319.
  • Bakker, R.T. (1978). Dinosaur feeding behaviour and the origin of flowering plants. Nature, 274, 661663.
  • Barrett, P.M. & Willis, K.J. (2001). Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited. Biol. Rev., 76, 411447.
  • Bartsch, I. & Moore, T.R. (1985). A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can. J. Bot., 63, 12411248.
  • Berendse, F. (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol., 78, 413427.
  • Berendse, F. (1994a). Competition between plant populations at low and high nutrient supplies. Oikos, 71, 253260.
  • Berendse, F. (1994b). Litter decomposability – a neglected component of plant fitness. J. Ecol., 82, 187190.
  • Berendse, F. (1998). Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry, 42, 7388.
  • Berg, B., Berg, M., Bottner, P., Box, E., Breymeyer, A., Calvo de Anta, R. et al. (1993). Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry, 20, 127153.
  • Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Lin. Soc., 36, 227249.
  • Van Breemen, N. (1995). How sphagnum bogs down other plants. Trends Ecol. Evol., 10, 270275.
  • Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O. et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett., 11, 10651071.
  • Crane, P.R. & Lidgard, S. (1990). Angiosperm radiation and patterns of Cretaceous palynological diversity. In: Major Evolutionary Radiations (eds Taylor, P.D. & Larwood, G.P.). Oxford University Press, Oxford, pp. 377407.
  • Crane, P.R., Friis, E.M. & Pedersen, K.R. (1995). The origin and early diversification of angiosperms. Nature, 374, 2733.
  • Crepet, W.L. & Niklas, K.J. (2009). Darwin’s second “abominable mystery”: Why are there so many angiosperm species? Am. J. Bot., 96, 366381.
  • Davies, J.T., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E. & Savolainen, V. (2004). Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA, 101, 19041909.
  • Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295304.
  • Doyle, J.A. (2001). Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. Palaeobotanist, 50, 167188.
  • Doyle, J.A. & Donoghue, M.J. (1993). Phylogenies and angiosperm diversification. Paleobiology, 19, 141167.
  • Doyle, J.A. & Hickey, L.J. (1976). Pollen and leaves from the mid-Cretaceous Potomac group and their bearing on early angiosperm evolution. In: Origin and early evolution of angiosperms (ed. Beck, C.B.). Colombia University Press, New York, pp. 139206.
  • Doyle, J.A., Endress, P.K. & Upchurch, G.R. Jr (2008). Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 64, 5987.
  • Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. & Donoghue, M.J. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology, 30, 82107.
  • Friedman, W.E. (2009). The meaning of Darwin’s “abominable mystery”. Am. J. Bot., 96, 521.
  • Friis, E.M., Pedersen, K.R. & Crane, P.R. (2006). Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 251293.
  • Grime, J.P. (2002). Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edn. John Wiley & Sons Ltd, Chichester.
  • Grime, J.P., Hodgson, J.P. & Hunt, R. (2007). Comparative Plant Ecology: A Functional Approach to Common British Species, 2nd edn. Castlepoint Press, Dalbeattie.
  • Heil, G. & Diemont, W.H. (1984). Raised nutrient levels change heathland into grassland. Vegetatio, 53, 113120.
  • Hickey, L.J. & Doyle, J.A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev., 43, 3104.
  • Hill, C.R. (1996). A plant with flower-like organs from the Wealden of the Weald (Lower Cretaceous), southern England. Cret. Res., 17, 2738.
  • Kristensen, H.L., McCarty, G.W. & Meisinger, J.J. (2000). Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci. Soc. Am. J., 64, 371378.
  • Limpens, J., Berendse, F. & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol., 157, 339347.
  • Limpens, J., Berendse, F. & Klees, H. (2004). How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793804.
  • Lupia, R., Lidgard, S. & Crane, P.R. (1999). Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25, 305340.
  • Magallón, S. & Castillo, A. (2009). Angiosperm diversification through time. Am. J. Bot., 96(1), 349365.
  • Matson, P.A.. & Boone, R.D. (1984). Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology, 65, 15111516.
  • Mohr, B.A.R. & Eklund, H. (2003). Araripia florifera, a magnoliid angiosperm from the lower Cretaceous Crato Formation (Brazil). Rev. Paleobot. Palynol., 126, 279292.
  • Mohr, B.A.R. & Friis, E.M. (2000). Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. Suppl., 161, S155S167.
  • Mohr, B. & Rydin, C. (2002). Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe, 5, 335344.
  • Mulcahy, D.L. (1979). The rise of the angiosperms: a genecological factor. Science, 206, 2023.
  • Müller, P.E. (1879). Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler. Tidsskr. Skovbrug, 3, 1124.
  • Van Nes, E.H. & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecol. Model., 185, 153164.
  • Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361364.
  • Regal, P.J. (1977). Ecology and evolution of flowering plant dominance. Science, 196, 622629.
  • Retallack, G. & Dilcher, D.L. (1981). A coastal hypothesis for the dispersal and rise to dominance of flowering plants. In: Paleobotany, Paleoecology and Evolution, Vol. 2 (ed. Niklas, K.J.). Praeger Publishers, New York, pp. 2777.
  • Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. TREE, 18, 648656.
  • Scheffer, M., Carpenter, S.R., Foley, J.A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591596.
  • De Smidt, J.T. (1995). The imminent destruction of Northwest European heaths due to atmospheric nitrogen deposition. In: Heaths and Moorland: Cultural Landscapes (eds Thompson, D.B.A., Hester, A.J. & Usher, M.B.). Scottish Natural Heritage, Edinburgh, pp. 3445.
  • Sprent, J.I. (2005). Biological Nitrogen Fixation Associated with Angiosperms in Terrestrial Ecosystems. In: Nutrient acquisition by plants: an ecological perspective (ed. BassiRad, H.). Springer, Berlin. Ecol. Stud., 181, pp. 89116.
  • Stewart, W.N. & Rothwell, G.W. (1993). Paleobotany and the Evolution of Plants, 2nd edn. Cambridge University Press, Cambridge.
  • Sun, G., Dilcher, D.L. & Zheng, S. (2008). A review of recent advances in the study of early angiosperms from northeastern China. Paleoworld, 17, 166171.
  • Tomassen, H.B.M., Smolders, A.J.P., Limpens, J., Lamers, L.P.M. & Roelofs, J.G.M. (2004). Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition levels? J. Appl. Ecol., 41, 139150.
  • Van Vuuren, M.M.I., Berendse, F. & De Visser, W. (1993). Species and site differences in the decomposition of litters and roots from wet heathlands. Can. J. Bot., 71, 167173.
  • Verhoeven, J.T.A. & Liefveld, W.M. (1997). The ecological significance of organochemical compounds in Sphagnum. Act. Bot. Neerl., 46, 117130.
  • Verhoeven, J.T.A. & Toth, E.. (1995). Decomposition of Carex and Sphagnum litter in fens: effects of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem., 27, 271275.
  • Verhoeven, J.T.A., Koerselman, W. & Meuleman, A.F.M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. TREE, 11, 494497.
  • Wing, S.L. & Boucher, L.D. (1998). Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Planet Sci., 26, 379421.
  • Wolfe, J.A. (1997). Relations of environmental change to angiosperm evolution during the Late Cretaceous and Tertiary. In: Evolution and Diversification of Land Plants (eds Iwatsuki, K. & Raven, P.R.). Springer, Tokyo, pp. 269290.