SEARCH

SEARCH BY CITATION

References

  • Agnelli, A., Ascher, J., Corti, G., Ceccherini, M.T., Nannipieri, P. & Pietramellara, G. (2004). Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem., 36, 859868.
  • André, H.M., Ducarme, X. & Lebrun, P. (2002). Soil biodiversity: myth, reality or conning? Oikos, 96, 324.
  • Badalucco, L., DeCesare, F., Grego, S., Landi, L. & Nannipieri, P. (1997). Do physical properties of soil affect chloroform efficiency in lysing microbial biomass? Soil Biol. Biochem., 29, 11351142.
  • Bardgett, R.D. (2005). The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press, Oxford.
  • Bardgett, R.D. & McAlister, E. (1999). The measurement of soil fungal : bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils, 29, 282290.
  • Bardgett, R.D., Bowman, W.D., Kaufmann, R. & Schmidt, S.K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol., 20, 634641.
  • Batjes, N.H. (1995). A Homogenized Soil Data File for Global Environmental Research: A Subset of FAO, ISRIC and NRCS Profiles (Version 1.0). ISRIC, Wageningen.
  • Blume, E., Bischoff, M., Reichert, J., Moorman, T., Konopka, A. & Turco, R. (2002). Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol., 592, 111.
  • Boag, B. & Yeates, G. (1998). Soil nematode biodiversity in terrestrial ecosystems. Biodiver. Conserv., 7, 617630.
  • Boyle, S.A., Yarwood, R.R., Bottomley, P.J. & Myrold, D.D. (2008). Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biol. Biochem., 40, 443451.
  • Castellazzi, M.S., Brookes, P.C. & Jenkinson, D.S. (2004). Distribution of microbial biomass down soil profiles under regenerating woodland. Soil Biol. Biochem., 36, 14851489.
  • Cebrian, J. (2004). Role of first-order consumers in ecosystem carbon flow. Ecol. Lett., 7, 232240.
  • Chapin, F., Matson, P. & Mooney, H. (2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York.
  • Cleveland, C.C. & Liptzin, D. (2007). C : N : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235252.
  • Coleman, D. & Wall, D. (2007). Fauna: the engine for microbial activity and transport. In: Soil Microbiology, Ecology, and Biochemistry (ed. Paul, E.). Academic Press, New York, pp. 163191.
  • Coleman, D., Crossley, D. & Hendrix, P. (2004). Fundamentals of Soil Ecology, 2nd edn. Elsevier, New York.
  • Davidson, E.A. & Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165173.
  • DeDeyn, G., Cornelissen, J. & Bardgett, R. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett., 11, 516531.
  • Dictor, M., Tessier, L. & Soulas, G. (1998). Reassessment of the Kec coefficient of the fumigation-extraction method in a soil profile. Soil Biol. Biochem., 30, 119127.
  • Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A. et al. (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578580.
  • Ferris, H., Venette, R.C. & Lau, S.S. (1997). Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biol. Biochem., 29, 11831194.
  • Fierer, N. & Jackson, R. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA, 103, 626631.
  • Fierer, N., Schimel, J. & Holden, P. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem., 35, 167176.
  • Fierer, N., Jackson, J., Vilgalys, R. & Jackson, R. (2005). The assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol., 71, 41174120.
  • Fierer, N., Bradford, M. & Jackson, R. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 13541364.
  • Freckman, D.W. & Virginia, R.A. (1989). Plant-feeding nematodes in deep-rooting desert ecosystems. Ecology, 70, 16651678.
  • Grandy, A. & Neff, J. (2008). Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ., 404, 221446.
  • Grogan, P. & Jonasson, S. (2005). Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types. Glob. Chang. Biol., 11, 465475.
  • Guggenberger, G., Frey, S.D., Six, J., Paustian, K. & Elliott, E.T. (1999). Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci. Soc. Am. J., 63, 11881198.
  • Harris, R. (1981). Effect of water potential on microbial growth and activity. In: Water Potential Relations in Soil Microbiology (eds Parr, J., Gardner, W. & Elliott, L.). Soil Science Society of America, Madison, pp. 2395.
  • Van Der Heijden, M.G.A., Bardgett, R.D. & Van Straalen, N.M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett., 11, 296310.
  • Hendrix, P.F., Parmalee, R.W., Crossley, D.A., Coleman, D.C., Odum, E.P. & Groffman, P.M. (1986). Detritus food webs in conventional and no-tillage agroecosystems. Bioscience, 36, 374380.
  • Hunt, H. & Wall, D. (2002). Modelling the effects of loss of soil biodiversity on ecosystem function. Glob. Chang. Biol., 8, 3350.
  • Insam, H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol. Biochem., 22, 525532.
  • Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E. & Schulze, E.D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389411.
  • Jackson, R., Mooney, H. & Schulze, E.-D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl Acad. Sci. USA, 94, 73627366.
  • Jenkinson, D., Brookes, P. & Powlson, D. (2004). Measuring soil microbial biomass. Soil Biol. Biochem., 36, 57.
  • Jobbagy, E.G. & Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10, 423436.
  • Joergensen, R.G. & Wichern, F. (2008). Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem., 40, 29772991.
  • Kandeler, E. (2007). Physiological and biochemical methods for studying soil biota and their function. In: Soil Microbiology, Ecology, and Biochemistry (ed. Paul, E.). Academic Press, New York, pp. 5383.
  • Keller, M., Schimel, D.S., Hargrove, W.W. & Hoffman, F.M. (2008). A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ., 6, 282284.
  • Kirk, J.L., Beaudette, L.A., Hart, M., Moutoglis, P., Khironomos, J.N., Lee, H. et al. (2004). Methods of studying soil microbial diversity. J. Microbiol. Methods, 58, 169188.
  • Kuijper, L.D.J., Berg, M.P., Morrien, E., Kooi, B.W. & Verhoef, H.A. (2005). Global change effects on a mechanistic decomposer food web model. Glob. Chang. Biol., 11, 249265.
  • Lauber, C.L., Strickland, M.S., Bradford, M.A. & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem., 40, 24072415.
  • Lauber, C., Knight, R., Hamady, M. & Fierer, N. (2009). Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl. Environ. Microbiol., 75, 51115120.
  • Lavelle, P. & Spain, A. (2001). Soil Ecology. Kluwer, Boston.
  • Lee, K. (1985). Earthworms: Their Ecology and Relationshiops with Soils and Land Use. Academic Press, New York.
  • Martens, R. (1995). Current methods for measuring microbial biomass-C in soil – potentials and limitations. Biol. Fertil. Soils, 19, 8799.
  • McNaughton, S., Oesterheld, M., Frank, D. & Williams, K. (1989). Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature, 341, 142144.
  • McNaughton, S., Oesterheld, M., Frank, D. & Williams, K. (1991). Primary and secondary production in terrestrial ecosystems. In: Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories (eds Cole, J., Lovett, G. & Findlay, S.). Springer Verlag, New York, pp. 120139.
  • Nemergut, D.R., Townsend, A.R., Sattin, S.R., Freeman, K.R., Fierer, N., Neff, J.C. et al. (2008). The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ. Microbiol., 10, 30933105.
  • Paul, E. & Clark, F. (1989). Soil Microbiology and Biochemistry. Academic Press, San Diego.
  • Paul, E.A., Follett, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A. & Lyon, D.J. (1997). Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci. Soc. Am. J., 61, 10581067.
  • Paustian, K., Andren, O., Clarholm, M., Hansson, A.C., Johansson, G., Lagerlof, J. et al. (1990). Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization. J. Appl. Ecol., 27, 6084.
  • Petersen, H. & Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39, 287388.
  • Raich, J.W. & Schlesinger, W.H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser. B, 44, 8199.
  • Santruckova, H., Bird, M.I., Kalaschnikov, Y.N., Grund, M., Elhottova, D., Simek, M. et al. (2003). Microbial characteristics of soils on a latitudinal transect in Siberia. Glob. Chang. Biol., 9, 11061117.
  • Saugier, B., Roy, J. & Mooney, H. (2001). Estimations of global terrestrial productivity: Converging towards a single number? In: Terrestrial Global Productivity (eds Roy, J., Saugier, B. & Mooney, H.). Academic Press, San Diego, CA, pp. 543557.
  • Simpson, A.J., Simpson, M.J., Smith, E. & Kelleher, B.P. (2007). Microbially derived inputs to soil organic matter: are current estimates too low? Environ. Sci. Tech., 41, 80708076.
  • Six, J., Conant, R.T., Paul, E.A. & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil, 241, 155176.
  • Six, J., Frey, S.D., Thiet, R.K. & Batten, K.M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J., 70, 555569.
  • Sohlenius, B. (1979). A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecol., 2, 3040.
  • Sollins, P., Homann, P. & Caldwell, B.A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65105.
  • Strickland, M., Lauber, C., Fierer, N. & Bradford, M. (2009a). Testing the functional significance of microbial community composition. Ecology, 90, 441451.
  • Strickland, M., Osbourn, E., Lauber, C., Fierer, N. & Bradford, M. (2009b). Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Funct. Ecol., 23, 627636.
  • Systat Software Inc. (2004). Systat for Windows. In Systat Software, Inc., Richmond, CA.
  • Tate, K., Ross, D. & Feltham, C. (1988). A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol. Biochem., 20, 329355.
  • Thies, J. (2007). Molecular methods for studying soil ecology. In: Soil Microbiology, Ecology, and Biochemistry (ed. Paul, E.). Academic Press, New York, pp. 85118.
  • Trumbore, S. (2000). Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol. Appl., 10, 399411.
  • Vance, E., Brookes, P. & Jenkinson, D. (1987). An extraction method for measuring soil microbial C. Soil Biol. Biochem., 19, 703707.
  • Wardle, D.A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev., 67, 321358.
  • Wardle, D.A. (1998). Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biol. Biochem., 30, 16271637.
  • Wardle, D. (2002). Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton, NJ.
  • Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., Van Der Putten, W.H. & Wall, D.H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 16291633.
  • Weintraub, M.N. & Schimel, J.P. (2003). Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems, 6, 129143.
  • Whittaker, R. (1975). Communities and Ecosystems, 2nd edn, MacMillan, New York.
  • Wright, C.J. & Coleman, D.C. (2000). Cross-site comparison of soil microbial biomass, soil nutrient status, and nematode trophic groups. Pedobiologia, 44, 223.
  • Zak, D.R., Tilman, D., Parmenter, R.R., Rice, C.W., Fisher, F.M., Vose, J. et al. (1994). Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study. Ecology, 75, 23332347.
  • Zak, J.C., Sinsabaugh, R. & Mackay, W.P. (1995). Windows of opportunity in desert ecosystems – their implications to fungal community-development. Can. J. Bot., 73, S1407S1414.
  • Zlotin, R. & Khodashova, K. (1980). The Role of Animals in Biological Cycling of Forest-Steppe Ecosystems. Academic Press, New York.
  • Zwart, K.B., Burgers, S.L.G.E., Bloem, J., Bouwman, L.A., Brussaard, L., Lebbink, G. et al. (1994). Population dynamics in the belowground food webs in two different agricultural systems. Agric. Ecosys. Environ., 51, 187198.