SEARCH

SEARCH BY CITATION

References

  • Alexopoulos, C.J., Mims, C.W. & Blackwell, M. (1996). Introductory Mycology. John Wiley and Sons, Inc, New York.
  • Arneodo, J.D., Bressan, A., Lherminier, J., Michel, J. & Boudon-Padieu, E. (2008). Ultrastructural detection of an unusual intranuclear bacterium in Pentastiridius leporinus (Hemiptera: Cixiidae). J. Invertebr. Path., 97, 310313.
  • Arnold, A.E. & Lewis, L.C. (2005). Ecology and evolution of fungal endophytes and their roles against insects. In: Insect–Fungal Associations: Ecology and Evolution (eds Blackwell, M. & Vega, F.E.). Oxford University Press, Oxford, pp. 211243.
  • Ba, A.S., Guo, D.A., Norton, R.A., Phillips, S.A. & Nes, W.D. (1995). Developmental differences in the sterol composition of Solenopsis invicta. Arch. Insect Biochem., 29, 19.
  • Bammert, G.F. & Fostel, J.M. (2000). Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob. Agents Chemother., 44, 12551265.
  • De Bary, A. (1879). The Phenomenon of Symbiosis. Karl J. Trubner, Strasbourg.
  • Brues, C.T. & Glaser, R.W. (1921). A symbiotic fungus occurring in the fat-body of Pulvinaria innumerabilis Rath. Biol. Bull., 40, 299U10.
  • Buchner, P. (1965). Endosymbiosis of Animals with Plant Microorganisms. Interscience, New York.
  • Bull, J.J. (1983). Evolution of Sex Determining Mechanisms. Benjamin/Cummings Publishing Co., Inc., Menlo Park.
  • Cardoza, Y.J., Klepzig, K.D. & Raffa, K.F. (2006). Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol. Entomol., 31, 636645.
  • Cheng, D.J. & Hou, R.F. (2001). Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera: Delphacidae). Tissue Cell, 33, 273279.
  • Dale, C., Plague, G.R., Wang, B., Ochman, H. & Moran, N.A. (2002). Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc. Natl. Acad. Sci. USA, 99, 1239712402.
  • Deacon, J. (2006). Fungal Biology. Wiley-Blackwell, New York.
  • Degnan, P.H., Lazarus, A.B. & Wernegreen, J.J. (2005). Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res., 15, 10231033.
  • Dillon, R.J. & Dillon, V.M. (2004). The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol., 49, 7192.
  • Von Dohlen, C.D., Kohler, S., Alsop, S.T. & McManus, W.R. (2001). Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature, 412, 433436.
  • Douglas, A.E. (2007). Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol., 25, 338342.
  • Douglas, A.E. (2008). Conflict, cheats and the persistence of symbioses. New Phytol., 177, 849858.
  • Douglas, A.E. (2009). The microbial dimension in insect nutritional ecology. Funct. Ecol., 23, 3847.
  • Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S. and Lafontaine, I. (2004). Genome evolution in yeasts. Nature, 430, 3544.
  • Ebbert, M.A., Marlowe, J.L. & Burkholder, J.J. (2003). Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J. Invertebr. Path., 83, 3745.
  • Fermaud, M. & Lemenn, R. (1992). Transmission of Botrytis cinerea to grapes by Grape Berry Moth larvae. Phytopathology, 82, 13931398.
  • Fukatsu, T. & Ishikawa, H. (1996). Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera: Aphididae) based on 18S rDNA sequence. Insect Biochem. Mol. Biol., 26, 383388.
  • Gibson, C.M. & Hunter, M.S. (2005). Reconsideration of the role of yeasts associated with Chrysoperla green lacewings. Biol. Control, 32, 5764.
  • Gibson, C.M. & Hunter, M.S. (2009a). Inherited fungal and bacterial endosymbionts of a parasitic wasp and its cockroach host. Microb. Ecol., 57, 542549.
  • Gibson, C.M. & Hunter, M.S. (2009b). Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp. Appl. Environ. Microbiol., 75, 31153119.
  • Gil, R., Silva, F.J., Zientz, E., Delmotte, F., Gonzalez-Candelas, F., Latorre, A. et al. (2003). The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc. Natl. Acad. Sci. USA, 100, 93889393.
  • Gusteleva, L.A. (1975). Biosynthesis of vitamins of B group by yeasts symbiotic on xylophagous insects. Microbiology, 44, 3638.
  • Harrington, T.C. (2005). Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Insect–Fungal Associations: Ecology and Evolution (eds Blackwell, M. & Vega, F.E.). Oxford University Press, Oxford, pp. 211243.
  • Heritage, J., Evans, E.G.V. & Killington, R.A. (1996). Introductory Microbiology. Cambridge University Press, New York.
  • Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J.H. (2008). How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol. Lett., 281, 215220.
  • Hogg, S. (2005). Essential Microbiology. John Wiley and Sons, Ltd., San Francisco.
  • Hongoh, Y. & Ishikawa, H. (2000). Evolutionary studies on uricases of fungal endosymbionts of aphids and planthoppers. J. Mol. Evol., 51, 265277.
  • Jackson, R.W. (2009). Plant Pathogenic Bacteria: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.
  • Jones, K.G. (1981). Baldcypress allelochemicals and the inhibition of silkworm enteric microorganisms: some ecological considerations. J. Chem. Ecol., 7, 103114.
  • Jurzitza, G. (1966). Das wachstum normaler und aposymbiontischer Lasioderma serricorne F (Coleoptera: Anobiidae) bei suboptimaler caseindosierung. Naturwissenschaften, 53, 709716.
  • Jurzitza, G. (1969). Vitamin requirements of normal and aposymbiotic Lasioderma serricorne F (Coleoptera: Anobiidae) and role of symbiotic fungi as vitamin sources for their hosts. Oecologia, 3, 7075.
  • Keeling, P.J. & Slamovits, C.H. (2004). Simplicity and complexity of microsporidian genomes. Eukaryot. Cell, 3, 13631369.
  • Kikuchi, Y., Hosokawa, T. & Fukatsu, T. (2007). Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol., 73, 43084316.
  • Klepzig, K.D., Adams, A.S., Handelsman, J. & Raffa, K.F. (2009). Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ. Entomol., 38, 6777.
  • Kumamoto, C.A. & Vinces, M.D. (2005). Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol., 59, 113133.
  • Labandeira, C. (2007). The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci., 14, 259275.
  • Lemos, E.G.D., Alves, L.M.C. & Campanharo, J.C. (2003). Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol. Lett., 219, 3945.
  • Lushbaugh, W.B., Rowton, E.D. & McGhee, R.B. (1976). Redescription of Coccidiascus legeri Chatton, 1913 (Nematosporaceae: Hemiascomycetidae), an intracellular parasitic yeastlike fungus from intestinal epithelium of Drosophila melanogaster. J. Invertebr. Path., 28, 93107.
  • Mahadav, A., Gerling, D., Gottlieb, Y., Czosnek, H. & Ghanim, M. (2008). Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics, 9, 342.
  • Martin, M.M. & Kukor, J.J. (1984). Role of mycophagy and bacteriophagy in invertebrate nutrition. In: Current Perspectives in Microbial Ecology (eds Klug, M.J. & Reddy, C.A.). American Society for Microbiology, Washington, DC. 257263.
  • McCreadie, J.W., Beard, C.E. & Adler, P.H. (2005). Context-dependent symbiosis between black flies (Diptera: Simuliidae) and trichomycete fungi (Harpellales: Legeriomycetaceae). Oikos, 108, 362370.
  • Miller, T.A. (2008). Pest and disease challenges and insect biotechnology solutions. Entomol. Res., 38, 3440.
  • Moran, N.A., Tran, P. & Gerardo, N.M. (2005). Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol., 71, 88028810.
  • Moran, N.A., McCutcheon, J.P. & Nakabachi, A. (2008). Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet., 42, 165190.
  • Murray, R.G.E. & Schleifer, K.H. (1994). Taxonomic notes – a proposal for recording the properties of putative taxa of prokaryotes. Int. J. Syst. Bacteriol., 44, 174176.
  • Nardi, J.B., Mackie, R.I. & Dawson, J.O. (2002). Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J. Insect Physiol., 48, 751763.
  • Nardon, P. & Grenier, A.M. (1989). Endosymbiosis in Coleoptera: biological, biochemical, and genetic aspects. In: Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution (eds Schwemmler, W. & Gassner, G.). CRC Press, Boca Raton, pp. 175216.
  • Nguyen, N.H., Suh, S.O. & Blackwell, M. (2007). Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia, 99, 842858.
  • Noda, H. & Kawahara, N. (1995). Electrophoretic karyotype of intracellular yeast-like symbiotes in rice planthoppers and anobiid beetles. J. Invertebr. Path., 65, 118124.
  • Noda, H. & Kodama, K. (1996). Phylogenetic position of yeastlike endosymbionts of anobiid beetles. Appl. Environ. Microbiol., 62, 162167.
  • Noda, H. & Koizumi, Y. (2003). Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbiotes of rice planthoppers and anobiid beetles. Insect Biochem. Mol. Biol., 33, 649658.
  • Olsen, L.E. & Hoy, M.A. (2002). Heat curing Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae) of a fitness-reducing microsporidium. J. Invertebr. Path., 79, 173178.
  • Pant, N.C., Gupta, P. & Nayar, J.K. (1960). Physiology of intracellular symbiotes of Stegobium paniceum L with special reference to amino acid requirements of the host. Experientia, 16, 311312.
  • Perez-Brocal, V., Gil, R., Ramos, S., Lamelas, A., Postigo, M., Michelena, J.M. et al. (2006). Small microbial genome: the end of a long symbiotic relationship? Science, 314, 312313.
  • Phaff, H.J. & Starmer, W.T. (1987). Yeasts associated with plants, insects and soil. In: The Yeasts (eds Rose, A.H. & Harrison, J.S.). Academic, New York, 123180.
  • Reiman, D.A. (2008). ‘Til death do us part’: coming to terms with symbiotic relationships. Nat. Rev. Microbiol., 6, 721724.
  • Sasaki, T., Kawamura, M. & Ishikawa, H. (1996). Nitrogen recycling in the brown planthopper, Nilaparvata lugens: involvement of yeast-like endosymbionts in uric acid metabolism. J. Insect Physiol., 42, 125129.
  • Scannell, D.R., Butler, G. & Wolfe, K.H. (2007). Yeast genome evolution – the origin of the species. Yeast, 24, 929942.
  • Shen, S.K. & Dowd, P.F. (1992). Detoxifying enzymes and insect symbionts. J. Chem. Educ., 69, 796799.
  • Slippers, B., Coutinho, T.A., Wingfield, B.D. & Wingfield, M.J. (2003). A review of the genus Amylostereum and its association with woodwasps. S. Afr. J. Sci., 99, 7074.
  • Srutka, P., Pazoutova, S. & Kolarik, M. (2007). Daldinia decipiens and Entonaema cinnabarina as fungal symbionts of Xiphydria wood wasps. Mycol. Res., 111, 224231.
  • Suh, S.O. & Blackwell, M. (2004). Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res., 5, 8795.
  • Suh, S.O., Noda, H. & Blackwell, M. (2001). Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol. Biol. Evol., 18, 9951000.
  • Suh, S.O., McHugh, J.V., Pollock, D.D. & Blackwell, M. (2005). The beetle gut: a hyperdiverse source of novel yeasts. Mycol. Res., 109, 261265.
  • Sung, G.H., Poinar, G.O. & Spatafora, J.W. (2008). The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol. Phylogenet. Evol., 49, 495502.
  • Vega, F.E. (2008). Insect pathology and fungal endophytes. J. Invertebr. Pathol., 98, 277279.
  • Vega, F.E. & Dowd, P.F. (2005). The role of yeasts as insect endosymbionts. In: Insect–Fungal Associations: Ecology and Evolution (eds Blackwell, M. & Vega, F.E.). Oxford University Press, Oxford, pp. 211243.
  • Vega, F.E., Blackburn, M.B., Kurtzman, C.P. & Dowd, P.F. (2003). Identification of a coffee berry borer-associated yeast: does it break down caffeine? Entomol. Exp. Appl., 107, 1924.
  • Vishniac, H.S. & Johnson, D.T. (1990). Development of a yeast flora in the adult green June beetle (Cotinis nitida, Scarabaeidae). Mycologia, 82, 471479.
  • Willey, J., Sherwood, L. & Woolverton, C. (2007). Microbiology. McGraw-Hill Science/Engineering/Math, New York.
  • Wren, H.N. & Cochran, D.G. (1987). Xanthine dehydrogenase activity in the cockroach endosymbiont Blattabacterium cuenoti (Mercier 1906) Hollande and Favre 1931 and in the cockroach fat body. Comp. Biochem. Phys. B, 88, 10231026.
  • Yoshida, N., Oeda, K., Watanabe, E., Mikami, T., Fukita, Y., Nishimura, K. et al. (2001). Protein function – chaperonin turned insect toxin. Nature, 411, 4445.
  • Zacchi, I. & Vaughn-Martini, A. (2002). Yeasts associated with insects in agricultural areas of Perugia, Italy. Annu. Rev. Microbiol., 52, 237244.
  • Zhang, N., Suh, S.O. & Blackwell, M. (2003). Microorganisms in the gut of beetles: evidence from molecular cloning. J. Invertebr. Path., 84, 226233.