SEARCH

SEARCH BY CITATION

Keywords:

  • Biodiversity;
  • coral reef;
  • ecosystem function;
  • horizontal diversity;
  • intertidal;
  • kelp forest;
  • subtidal;
  • top-down control;
  • trophic cascade

Ecology Letters (2010) 13: 194–201

Abstract

A rapidly accumulating body of research has shown that species diversity consistently affects the functioning of ecosystems. The incorporation of trophic complexity and the extension of this research to larger scales and natural ranges in species diversity remain as important challenges for understanding the true magnitude of these effects in natural systems. Here, we test whether the diversity of prey communities affects the magnitude of aggregate consumer effects. We conducted a meta-analysis of 57 consumer removal field experiments from a range of intertidal and subtidal hard substrate marine communities. We found that the richness of the prey community was the strongest predictor of the magnitude of consumer effects while controlling for habitat type, taxonomic composition, and other variables. Consumer removal increased aggregate prey abundance on average by 1200% at the lower limit of prey diversity (two species), but only 200% at the upper limit of 37 species. Importantly, compositional change was substantial at both high and low prey diversity, suggesting predation intensity did not vary with prey richness. Rather diverse prey communities appear to be more capable of maintaining abundance via compensatory responses, by containing prey species that are resistant to (or tolerant of) predators. These results suggest that the effects of species diversity on trophic interactions may scale consistently from small-scale manipulations to cross-community comparisons.