SEARCH

SEARCH BY CITATION

Keywords:

  • Biodiversity;
  • continuum theory;
  • fractals;
  • MaxEnt;
  • macroecology;
  • neutral theory;
  • stochastic geometry;
  • unified theory

Ecology Letters (2010) 13: 627–642

Abstract

A unified theory in science is a theory that shows a common underlying set of rules that regulate processes previously thought to be distinct. Unified theories have been important in physics including the unification of electricity and magnetism and the unification of the electromagnetic with the weak nuclear force. Surprisingly, ecology, specifically the subfields of biodiversity and macroecology, also possess not one but at least six unified theories. This is problematic as only one unified theory is desirable. Superficially, the six unified theories seem very different. However, I show that all six theories use the same three rules or assertions to describe a stochastic geometry of biodiversity. The three rules are: (1) intraspecifically individuals are clumped together; (2) interspecifically global or regional abundance varies according to a hollow curve distribution; and (3) interspecifically individuals are placed without regard to individuals of other species. These three rules appear sufficient to explain local species abundance distributions, species–area relationships, decay of similarity of distance and possibly other patterns of biodiversity. This provides a unification of the unified theories. I explore implications of this unified theory for future research.