SEARCH

SEARCH BY CITATION

References

  • Addo-Fordjour, P., Obeng, S., Addo, M.G. & Akyeampong, S. (2009). Effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana. For. Ecol. Manag., 258, 728734.
  • Allen, B.P., Sharitz, R.R. & Goebel, P.C. (2007). Are lianas increasing in importance in temperate floodplain forests in the southeastern United States? For. Ecol. Manag., 242, 1723.
  • Andrade, J.L., Meinzer, F.C., Goldstein, G. & Schnitzer, S.A. (2005). Water uptake and transport in lianas and co-occuring trees of a seasonally dry tropical forest. Trees Struct. Func., 19, 282289.
  • Arroyo-Rodriguez, V. & Toledo-Aceves, T. (2009). Impact of landscape spatial patterns on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Appl. Veg. Sci., 12, 340348.
  • Asner, G.P. & Alencar, A. (2010). Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol., 187, 569578.
  • Asner, G.P., Broadbent, E.N., Oliveira, P.J.C., Keller, M., Knapp, D.E. & Silva, J.N.M. (2006). Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl Acad. Sci. USA, 103, 1294712950.
  • Belote, R.T., Weltzen, J.F. & Norby, R.J. (2003). Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol., 161, 827835.
  • Benítez-Malvido, J. & Martínez-Ramos, M. (2003). Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv. Biol., 17, 389400.
  • Caballé, G. & Martin, A. (2001). Thirteen years of change in trees and lianas in a Gabonese rainforest. Plant Ecol., 152, 167173.
  • Cai, Z.Q. & Bongers, F. (2007). Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. J. Trop. Ecol., 23, 115118.
  • Cai, Z.-Q., Schnitzer, S.A. & Bongers, F. (2009). Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia, 161, 2533.
  • Chave, J., Riéra, B. & Dubois, M. (2001). Estimation of biomass in a Neotropical forest in French Guiana: spatial and temporal variability. J. Trop. Ecol., 17, 7996.
  • Chave, J., Olivier, J., Bongers, F., Châtelet, P., Forget, P.M., van der Meer, P. et al. (2008). Aboveground biomass and productivity in a rain forest of eastern South America. J. Trop. Ecol., 24, 355366.
  • Chazdon, R.L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst., 6, 5171.
  • Chen, Y.-J., Bongers, F., Cao, K.-F. & Cai, Z.-Q. (2008). Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia. J. Trop. Ecol., 24, 517524.
  • Clark, D.A. (2004). Tropical forests and global warming: slowing it down or speeding it up? Front. Ecol. Evol., 2, 7280.
  • Condit, R., Watts, K., Bohlman, S.A., Pérez, R., Foster, R.B. & Hubbell, S.P. (2000). Quantifying the deciduousness of tropical canopies under varying climates. J. Veg. Sci., 11, 649658.
  • DeWalt, S.J., Schnitzer, S.A. & Denslow, J.S. (2000). Density and diversity of lianas along a seasonal tropical forest chronosequence in central Panama. Journal of Tropical Ecology, 16, 119.
  • DeWalt, S.J. & Chave, J. (2004). Structure and biomass of four lowland Neotropical forests. Biotropica, 36, 719.
  • DeWalt, S.J., Schnitzer, S.A., Chave, J., Bongers, F., Burnham, R.J., Cai, Z.Q. et al. (2010). Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica, 42, 309317.
  • Dierschke, H. (2005). Laurophyllisation - auch eine Erscheinung im nordlichen Mitteleuropa? Zur aktuellen Ausbreitung von Hedera helix in sommergrunen Laubwaldern. Ber. Reinh Tuxen Ges, 17, 151168.
  • Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C. & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185190.
  • Domingues, T., Martinelli, L. & Ehleringer, J. (2007). Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecol., 193, 101112.
  • Ewango, C.E.N. (2010). The liana assemblage of a Congolian rainforest. Diversity structure and function. PhD Thesis, Wageningen University, Wageningen, The Netherlands.
  • Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237240.
  • Fike, J. & Niering, W.A. (1999). Four decades of old field vegetation development and the role of Celastrus orbiculatus in the northeastern United States. J. Veg. Sci., 10, 483492.
  • Foster, J.R., Townsend, P.A. & Zganjar, C.E. (2008). Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sensing Environ., 112, 21042117.
  • Gallagher, R.V., Hughes, L., Leishman, M.R. & Wilson, P.D. (2010). Predicted impact of exotic vines on an endangered ecological community under future climate change. Biol. Invasions, 12, 40494063.
  • Gentry, A.H. (1991). The distribution and evolution of climbing plants. In: The Biology of Vines (eds Putz, F.E. & Mooney, H.A.). Cambridge University Press, Cambridge, pp. 349.
  • Gerwing, J.J. & Farias, D.L. (2000). Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. J. Trop. Ecol., 16, 327335.
  • Gerwing, J.J., Schnitzer, S.A., Burnham, R.J., Bongers, F., Chave, J., DeWalt, S.J., et al. (2006). A standard protocol for liana censuses. Biotropica, 38, 256261.
  • Gilbert, B., Wright, S.J., Kitajima, K., Muller-Landau, H.C. & Hernandéz, A. (2006). Life history trade-offs in tropical trees and lianas. Ecology, 87, 12811288.
  • Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G. & Wright, S.J. (2003). Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc. Natl Acad. Sci. USA, 100, 572576.
  • Granados, J. & Korner, C. (2002). In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob. Change Biol., 8, 19.
  • Grauel, W.T. & Putz, F.E. (2004). Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. For. Ecol. Manag., 190, 99108.
  • Hättenschwiler, S. & Körner, C. (2003). Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests? Funct. Ecol., 17, 778785.
  • Hättenschwiler, S., Aeschlimann, B., Coûteaux, M.-M., Roy, J. & Bonal, D. (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol., 179, 165175.
  • van der Heijden, G.M.F. & Phillips, O.L. (2009). Environmental effects on Neotropical liana species richness. J. Biogeogr., 36, 15611572.
  • van der Heijden, G.M.F., Healey, J.R. & Phillips, O.L. (2008). Infestation of trees by lianas in a tropical forest in Amazonian Peru. J. Veg. Sci., 19, 747756.
  • Horvitz, C.C. & Koop, A. (2001). Removal of nonnative vines and post-hurricane recruitment in tropical hardwood forests of Florida. Biotropica, 33, 268281.
  • Ingwell, L.L., Wright, S.J., Becklund, K.K., Hubbell, S.P. & Schnitzer, S.A. (2010). The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J. Ecol., 98, 879887.
  • Kalácska, M., Calvo-Alvarado, J.C. & Sánchez-Azofeifa, G.A. (2005). Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol., 25, 733744.
  • Körner, C. (2006). Forests, biodivsity and CO2: surprises are certain. Biologist, 53, 8290.
  • Kurzel, B.P., Schnitzer, S.A. & Carson, W.P. (2006). Predicting liana crown location from stem diameter in three Panamanian lowland forests. Biotropica, 38, 262266.
  • Kusumoto, B. & Enoki, T. (2008). Contribution of a liana species, Mucuna macrocarpa Wall., to litterfall production and nitrogen input in a subtropical evergreen broad-leaved forest. J. For. Res., 13, 3542.
  • Ladwig, L. & Meiners, S. (2010a). Liana host preference and implications for deciduous forest regeneration. J Torrey Bot. Soc., 137, 103112.
  • Ladwig, L. & Meiners, S. (2010b). Spatiotemporal dynamics of lianas during 50 years of succession to temperate forest. Ecology, 91, 671680.
  • Laurance, W.F., Laurance, S.G., Ferreira, L.V., Rankin-de Merona, J.M., Gascon, C. & Lovejoy, T.E. (1997). Biomass collapse in Amazonian forest fragments. Science, 278, 11171118.
  • Laurance, W.F., Pérez-Salicrup, D., Delamônica, P., Fearnside, P.M., D’Angelo, S., Jerozolinski, A. et al. (2001). Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82, 105116.
  • Laurance, W.F., Goosem, M. & Laurance, S.G.W. (2009). Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol., 24, 659669.
  • Lee, T. & McPhaden, M.J. (2010). Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603. DOI: 10.1029/2010GL044007.
  • Letcher, S.G. & Chazdon, R.L. (2009). Lianas and self-supporting plants during tropical forest succession. For. Ecol. Manag., 257, 21502156.
  • Li, W., Fu, R., Negra Juarez, R.I. & Fernandes, K. (2008). Observed Change of the Standardized Precipitation Index, Its Potential Cause and Implications to Future Climate in the Amazon Region. Philosophical Transaction of the Royal Society: Climate Change and the Fate of the Amazon, 363, 17671772.
  • Londré, R.A. & Schnitzer, S.A. (2006). The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology, 87, 29732978.
  • Madeira, B.G., Espírito-Santo, M.M., Neto, S.D., Nunes, Y., Sánchez Azofeifa, G.A., Fernandes, G.W. et al. (2009). Changes in tree and liana communities along successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol., 201, 291304.
  • Malhi, Y. & Wright, J. (2005). Late twentieth-century patterns and trends in the climate of tropical forest regions. In: Tropical Forests and Global Amospheric Change (eds Malhi, Y. & Phillips, O.). Oxford University Press, Oxford, pp. 316.
  • van der Meer, P.J. & Bongers, F. (2001). Tree falls and tree fall gaps: patterns of disturbance. In: Nouragues. Dynamics and Plant Animal Relations in a Neotropical Rain Forest (eds Bongers, F., Charles-Dominique, P., Forget, P.M. & Thery, M.). Kluwer Academic Publishers, Dordrecht, pp. 243250.
  • Mohan, J.E., Ziska, L.H., Schlesinger, W.H., Thomas, R.B., Sicher, R.C., George, K. et al. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proc. Natl Acad. Sci. USA, 103, 90869089.
  • Nepstad, D.C., Tohver, I.M. & Ray, D. (2007). Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology, 88, 225969.
  • Opler, P.A., Baker, H.G. & Frankie, G.W. (1991). Seasonality of climbers: a review and example from Costa Rican dry forest. In: The Biology of Vines (eds Putz, F.E. & Mooney, H.A.). Cambridge University Press, Cambridge, pp. 377391.
  • Parren, M.P.E. & Doumbia, F. (2005). Logging and lianas in West Africa. In: Forest Climbing Plants of West Africa: Diversity, Ecology and Management (eds Bongers, F., Parren, M.P.E. & Traore, D.). CABI Publishing, Wallingford, pp. 183201.
  • Paul, G.S. & Yavitt, J.B. (2010). Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. Bot. Rev., DOI: 10.1007/s12229-010-9059-3.
  • Peña-Claros, M., Fredericksen, T.S., Alarco, A., Blate, G.M., Choque, U., Leano, C. et al. (2008). Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees. For. Ecol. Manag., 256, 14581467.
  • Peñalosa, J. (1984). Basal branching and vegetative spread in two tropical rain forest lianas. Biotropica, 16, 19.
  • Pérez-Salicrup, D.R. & Barker, M.G. (2000). Effect of liana cutting on water potential and growth of adult Senna multijuga (Caesalpinioideae) trees in a Bolivian tropical forest. Oecologia, 124, 469475.
  • Phillips, O.L. & Gentry, A.H. (1994). Increasing turnover through time in tropical forests. Science, 263, 954957.
  • Phillips, O.L., Vásquez, M.R., Arroyo, L., Baker, T., Killeen, T., Lewis, S.L. et al. (2002a). Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770774.
  • Phillips, O.L., Malhi, Y., Vinceti, B., Baker, T., Lewis, S.L., Higuchi, N. et al. (2002b). Changes in growth of tropical forests: evaluating potential biases. Ecol. Appl., 12, 576587.
  • Phillips, O.L., Vásquez Martínez, R., Monteagudo Mendoza, A., Baker, T.R. & Núñez Vargas, P. (2005). Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology, 86, 12501258.
  • Phillips, O.L., Aragao, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G. et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 13441347.
  • Powers, J.S., Kalicin, M. & Newman, M. (2004). Tree species do not influence local soil chemistry in a species-rich Costa Rican rain forest. J. Trop. Ecol., 20, 587590.
  • Putz, F.E. (1983). Liana biomass and leaf area of a tierra firme forest in the Rio Negro basin, Venezuela. Biotropica, 15, 185189.
  • Putz, F.E. (1984). The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 17131724.
  • Putz, F.E. & Windsor, D.M. (1987). Liana phenology on Barro Colorado Island, Panama. Biotropica, 19, 334341.
  • Restom, T.G. & Nepstad, D.C. (2001). Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia. Plant Soil, 236, 155163.
  • Restom, T.G. & Nepstad, D.C. (2004). Seedling growth dynamics of a deeply rooting liana in a secondary forest in eastern Amazonia. For. Ecol. Manag., 190, 109118.
  • Rogers, D., Rooney, T., Olson, D. & Waller, D. (2008). Shifts in southern Wisconsin forest canopy and understory richness, composition, and heterogeneity. Ecology, 89, 24822492.
  • Rutishauser, S.E. (2011). Increasing liana abundance and biomass in tropical forests: testing mechanistic explanations. MS Thesis. University of Wisconsin – Milwaukee, Milwaukee, WI, USA.
  • Sasek, T.W. & Strain, B.R. (1991). Effects of CO2 enrichment on the growth and morphology of a native and an introduced honeysuckle vine. Am. J. Bot., 78, 6975.
  • Schnitzer, S.A. (2005). A mechanistic explanation for global patterns of liana abundance and distribution. Amer. Natur., 166, 262276.
  • Schnitzer, S.A. & Bongers, F. (2002). The ecology of lianas and their role in forests. Trends Ecol. Evol., 17, 223230.
  • Schnitzer, S.A. & Carson, W.P. (2001). Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82, 913919.
  • Schnitzer, S.A. & Carson, W.P. (2010). Lianas suppress tree regeneration and diversity in treefall gaps. Ecol. Lett., 2010, 849857.
  • Schnitzer, S.A., Dalling, J.W. & Carson, W.P. (2000). The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J. Ecol., 88, 655666.
  • Schnitzer, S.A., Parren, M.P.E. & Bongers, F. (2004). Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. For. Ecol. Manag., 190, 8798.
  • Schnitzer, S.A., Kuzee, M. & Bongers, F. (2005). Disentangling above-and below-ground competition between lianas and trees in a tropical forest. J. Ecol., 93, 11151125.
  • Schnitzer, S.A., DeWalt, S.J. & Chave, J. (2006). Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica, 38, 581591.
  • Schnitzer, S.A., Londré, R.A., Klironomos, J. & Reich, P.B. (2008a). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2: comment. Ecology, 89, 581585.
  • Schnitzer, S.A., Rutishauser, S. & Aguilar, S. (2008b). Supplemental protocol for censusing lianas. For. Ecol. Manag., 255, 10441049.
  • Slik, J.W.F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114120.
  • Sperry, J.S., Holbrook, N.M., Zimmerman, M.H. & Tyree, M.T. (1987). Spring filling of xylem vessels in wild grapevine. Plant Physiol., 83, 414417.
  • Swaine, M.D. & Grace, J. (2007). Lianas may be favoured by low rainfall: evidence from Ghana. Plant Ecol., 192, 271276.
  • Toledo-Aceves, T. & Swaine, M.D. (2007). Effect of three species of climber on the performance of Ceiba pentandra seedlings in gaps in a tropical forest in Ghana. J. Trop. Ecol., 23, 4552.
  • Toledo-Aceves, T. & Swaine, M.D. (2008a). Above- and below-ground competition between the liana Acacia kameruensis and tree seedlings in contrasting light environments. Plant Ecol., 196, 233244.
  • Toledo-Aceves, T. & Swaine, M.D. (2008b). Effect of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana. J. Veg. Sci., 19, 717728.
  • Wright, S.J. (2005). Tropical forests in a changing environment. Trends Ecol. Evol., 20, 553560.
  • Wright, S.J. (2010). The future of tropical forests. Ann. NY Acad. Sci., 1195, 127.
  • Wright, S.J. & Osvaldo, C. (2006). Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecol. Lett., 9, 3544.
  • Wright, S.J., Calderón, O., Hernandéz, A. & Paton, S. (2004). Are lianas increasing in importance in tropical forests? A 17-year record from Panamá. Ecology, 85, 484489.
  • Wright, S.J., Jaramillo, M.A., Pavon, J., Condit, R., Hubbell, S.P. & Foster, R.B. (2005). Reproductive size thresholds in tropical trees: variation among individuals, species and forests. J. Trop. Ecol., 21, 307315.
  • Wright, S.J., Hernandez, A. & Condit, R. (2007). The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica, 39, 363371.
  • Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N., Chin, M. & Wang, H. (2008). A regional climate model study of how biomass burning aerosol impacts land-atmosphere interactions over the Amazon. J. Geophys. Res., 113, D14S15, doi: 10.1029/2007JD009449.
  • Zhu, S.-D. & Cao, K.-F. (2009). Hydraulic properties and photosynthetic rates in co-occuring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol., 204, 295304.
  • Zhu, S.-D. & Cao, K.-F. (2010). Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia, 163, 591599.
  • Zotz, G., Cueni, N. & Korner, C. (2006). In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct. Ecol., 20, 763769.