SEARCH

SEARCH BY CITATION

References

  • Abramowitz, G., Pitman, A., Gupta, H., Kowalczyk, E. & Wang, Y. (2007). Systematic bias in land surface models. J. Hydrometeorol., 8, 9891001.
  • Adams, J.M., Faure, H., Faure-Denard, L., McGlade, J.M. & Woodward, F.I. (1990). Increase in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348, 711714.
  • Araújo, M. & New, M. (2006). Ensemble forecasting of species distributions. Trends Ecol. Evol., 22, 4247.
  • Araújo, M., Whittaker, R., Ladle, R. & Erhard, M. (2005). Reducing uncertainty in projections of extinction risk from climate change. Global Ecol. Biogeogr., 14, 529538.
  • Arulampalam, M., Maskell, S., Gordon, N. & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50, 174188.
  • Baker, D.F., Law, R.M., Gurney, K.R., Rayner, P., Peylin, P., Denning, A.S. et al. (2006). TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003. Global Biogeochem. Cycles, 20, 10021017.
  • Bates, J. & Granger, C. (1969). The combination of forecasts. OR, 20, 451468.
  • Benestad, R. (2004). Tentative probabilistic temperature scenarios for northern Europe. Tellus A, 56, 89101.
  • Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P. & Tans, P.P. (2000). Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290, 13421346.
  • Braswell, B., Sacks, W., Linder, E. & Schimel, D. (2005). Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob. Change Biol., 11, 335355.
  • Burgers, G., van Leeuwen, P. & Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.
  • Carvalhais, N., Reichstein, M., J., S., G.J., C., Santos Pereira, J., Berbigier, P. et al. (2008). Implications of carbon cycle steady state assumptions for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochem. Cycles, 22, GB2007, doi: 10.1029/2007GB003033.
  • Chen, M., Liu, S., Tieszen, L. & Hollinger, D. (2008). An improved state-parameter analysis of ecosystem models using data assimilation. Ecol. Model., 219, 317326.
  • Cheung, K. (2001). A review of ensemble forecasting techniques with a focus on tropical cyclone forecasting. Meteorol. Appl., 8, 315332.
  • Clark, J., Carpenter, S., Barber, M., Collins, S., Dobson, A., Foley, J. et al. (2001). Ecological forecasts: an emerging imperative. Science, 293, 657.
  • Clemen, R. (1989). Combining forecasts: a review and annotated bibliography. Int. J. Forecast., 5, 559583.
  • Cosby, B. (1984). Dissolved oxygen dynamics of a stream: model discrimination and estimation of parameter variability using an extended Kalman filter. Water Sci. Technol., 16, 561569.
  • Cressman, G. (1959). An operational objective analysis system. Mon. Wea. Rev., 87, 367374.
  • Daley, R. (1991). Atmospheric Data Analysis. Cambridge University Press, Cambridge, 471 pp.
  • Denning, A.S., Holzer, M., Gurney, K.R., Heimann, M., Law, R.M., Rayner, P.J. et al. (1999). Threedimensional transport and concentration of SF6: a model intercomparison study (TransCom 2). Tellus, 51B, 266297.
  • Enting, I.G. 2002. Inverse Problems in Atmospheric Constituent Transport. Cambridge University Press, New York, 392 pp.
  • Evensen, G. (1992). Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. J. Geophys. Res., 97, 1790517924.
  • Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 1014310162.
  • Evensen, G. (2003). The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam., 53, 343367.
  • Evensen, G. (2007). Data Assimilation: The Ensemble Kalman Filter. Springer Verlag, Berlin.
  • Fang, H. & Liang, S. (2005). A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies. Remote Sens. Environ., 94, 405424.
  • Foley, J.A. (1995). An equilibrium model of the terrestrial carbon budget. Tellus, 47B, 310319.
  • Fox, A., Williams, M., Richardson, A., Cameron, D., Gove, J., Quaife, T. et al. (2009). The REFLEX project: comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agr. Forest Meteorol., 149, 15971615.
  • Friedlingstein, P., Bopp, L., Rayner, P., Cox, P., Betts, R., Jones, C. et al. (2006). Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate, 19, 33373353.
  • Gandin, L.S. (1963). Objective analysis of Meteorological field. Gidrometeorologicheskoe Izdatel’stvo, Leningrad, Translated From Russian in 1965 by Israel Program for Scientific Translations, Jerusalem, 242 pp.
  • Gao, G., Wang, H., Weng, E.S., Lakshmivarahan, S., Zhang, Y.F. & Luo, Y.Q. (2011). Assimilation of multiple data sets with ensemble Kalman filter for parameter estimation and forecasts of forest carbon dynamics. Ecol. Appl., in press.
  • Garreta, V., Miller, P., Guiot, J., Hély, C., Brewer, S., Sykes, M. et al. (2009). A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model. Clim. Dyn., 35, 371389.
  • Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S. & Morneau, J. (2007). Extension of 3DVAR to 4DVAR: implementation of 4DVAR at the Meteorological Service of Canada. Mon. Wea. Rev., 135, 23392354.
  • Gregory, A., Smith, G. & Yetman, J. (2001). Testing for forecast consensus. J. Bus. Econ. Stat., 19, 3443.
  • Guiot, J. & de Vernal, A. (2007). Chapter thirteen transfer functions: methods for quantitative paleoceanography based on microfossils. Dev. Mar. Geol., 1, 523563.
  • Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J. & Cheddadi, R. (2000). Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region. Ecol. Model., 127, 119140.
  • Guiot, J., Wu, H., Garreta, V., Hatté, C. & Magny, M. (2009). A few prospective ideas on climate reconstruction: from a statistical single proxy approach towards a multi-proxy and dynamical approach. Clim. Past., 5, 99125.
  • Gurney, K.R., Law, R.M., Scott Denning, A., Rayner, P.J., Baker, D., Bousquet, P. et al. (2002). Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415, 626630.
  • Haslett, J., Whiley, M., Bhattacharya, S., Salter-Townshend, M., Wilson, S., Allen, J. et al. (2006). Bayesian palaeoclimate reconstruction. J. R. Stat. Soc. A Stat., 169, 395438.
  • Hastings, W.K. (1970). Monte Carlo sampling using Markov chains and their applications. Biometrika, 57, 97109.
  • Hatté, C. & Guiot, J. (2005). Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nußloch loess sequence (Rhine Valley, Germany). Clim. Dyn., 25, 315327.
  • Hatté, C., Rousseau, D.-D. & Guiot, J. (2009). Climate reconstruction from pollen and 13C records using inverse vegetation modelling: implication for past and future climates. Clim. Past., 5, 147156.
  • Hazarika, M.K., Yasuoka, Y., Ito, A. & Dye, D. (2005). Estimation of net primary productivity by integrating remote sensing data with an ecosystem model. Remote Sens. Environ., 94, 298310.
  • Houtekamer, P.L., Mitchell, H.L. & Deng, X. (2009). Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143.
  • Hunt, B.R., Kalnay, E., Kostelich, E.J., Ott, E., Patil, D.J., Sauer, T. et al. (2004). Four-dimensional ensemble Kalman filtering. Tellus A, 56, 273277.
  • Iverson, L.R. & Prasad, A.M. (1998). Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol. Monogr., 68, 465485.
  • Joos, F., Gerber, S., Prentice, I.C., Otto-Bliesner, B.L. & Valdes, P.J. (2004). Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochem. Cycles, 18, GB2002.
  • Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. (ASME), 32D, 3545.
  • Kalnay, E. (2003). Atmospheric Modelling, Data Assimilation and Predictability. Cambridge University Press, UK.
  • Kaplan, J.O. (2001) Geophysical Applications of Vegetation Modeling. Lund University, Sweden, 210 pp.
  • Knorr, W. & Kattge, J. (2005). Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Glob. Change Biol., 11, 13331351.
  • Kolomyts, E.G. (2008). Landscape-ecological forecasts from computational models and palaeoreconstructions (using the Volga basin as an example). Geography and Nature Resources, 29, 209220.
  • Laplace, P.S. (1818). Deuxieme supplement a la theorie analytique des probabilites. Courcier, 7, 531580.
  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math., 2, 164168.
  • Liang, S. (2007). Recent developments in estimating land surface biogeophysical variables from optical remote sensing. Prog. Phys. Geog., 31, 501516.
  • Liang, S. & Qin, J. (2008). Data assimilation methods for land surface variable estimation. In: Advances in Land Remote Sensing (ed. Liang, S.). Springer, Netherlands, pp. 313339.
  • Liu, Y. & Gupta, H.V. (2007). Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour. Res., 43, W07401.
  • Lorenc, A.C. (1981). A global three-dimensional multivariate statistical interpolation scheme. Mon. Wea. Rev., 109, 701721.
  • Lorenc, A. & Payne, T.J. (2007). The Met Office global four-dimensional variational data assimilation scheme. Quart. J. R. Meteor. Soc., 133, 347362.
  • Luo, Y., White, L.W., Canadell, J.G., DeLucia, E.H., Ellsworth, D.S., Finzi, A. et al. (2003). Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Global Biogeochem. Cycles, 17, 1021.
  • Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X. & Zhang, L. (2009). Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models. Ecol. Appl., 19, 571574.
  • Luo, Y., Ogle, K., Tucker, C., Fei, S., Gao, C., LaDeau, S. et al. (2011). Ecological forecasting and data assimilation in a data-rich era. Ecol. Appl., in press.
  • Makridakis, S. & Winkler, R.L. (1983). Averages of forecasts: some empirical results. Manage. Sci., 29, 987996.
  • Mandel, J., Bennethum, L.S., Beezley, J.D., Coen, J.L., Douglas, C.C., Kim, M. et al. (2008). A wildland fire model with data assimilation. Math. Comput. Simulat., 79, 584606.
  • Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11, 431441.
  • Mathieu, P.-P. & O’Neill, A. (2008). Data assimilation: from photon counts to earth system forecasts. Remote Sens. Environ., 112, 12581267.
  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 10871092.
  • Miyamoto, M.M. (1985). Consensus cladograms and general classifications. Cladistics, 1, 186189.
  • Mo, X., Chen, J.M., Ju, W. & Black, T.A. (2008). Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filter. Ecol. Model., 217, 157173.
  • Ollinger, S. & Smith, M.-L. (2005). Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data. Ecosystems, 8, 760778.
  • Pan, M., Wood, E.F., Wójcik, R. & McCabe, M.F. (2008). Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ., 112, 12821294.
  • Peng, C.H., Guiot, J. & Van Campo, E. (1998). Estimating changes in terrestrial vegetation and carbon storage: using palaeoecological data and models. Quat. Sci. Rev., 17, 719735.
  • Peters, W., Jacobson, A.R., Sweeney, C., Andrews, A.E., Conway, T.J., Masarie, K. et al. (2007). An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 1892518930.
  • Potter, C.S., Wang, S., Nikolov, N.T., McGuire, A.D., Liu, J., King, A.W. et al. (2001). Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters. J. Geophys. Res., 106, 3367133687.
  • Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. (1992). A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr., 19, 117134.
  • Prentice, I.C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. (1996). Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn., 12, 185194.
  • Quaife, T., Lewis, P., De Kauwe, M., Williams, M., Law, B.E., Disney, M. et al. (2008). Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter. Remote Sens. Environ., 112, 13471364.
  • Raupach, M.R., Rayner, P.J., Barrett, D.J., DeFries, R.S., Heimann, M., Ojima, D.S. et al. (2005). Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Glob. Change Biol., 11, 378397.
  • Reichle, R.H., McLaughlin, D.B. & Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114.
  • Renzullo, L.J., Barrett, D.J., Marks, A.S., Hill, M.J., Guerschman, J.P., Mu, Q. et al. (2008). Multi-sensor model-data fusion for estimation of hydrologic and energy flux parameters. Remote Sens. Environ., 112, 13061319.
  • Sacks, W.J., Schimel, D.S., Monson, R.K. & Braswell, B.H. (2006). Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Glob. Change Biol., 12, 240259.
  • Sanders, F. (1963). On subjective probability forecasting. J. Appl. Meteorol., 2, 191201.
  • Santaren, D., Peylin, P., Viovy, N. & Ciais, P. (2007). Optimizing a process-based ecosystem model with eddy-covariance flux measurements: a pine forest in southern France. Global Biogeochem. Cycles, 21, GB2013.
  • Schaepman, M.E., Wamelink, G.W.W., van Dobben, H., Gloor, M., Schaepman-Strub, G. & Kooistra, L. (2007). River floodplain vegetation scenario development using imaging spectroscopy and ecosystem models. Photogramm. Eng. Rem. S., 73, 11791188.
  • Scholze, M., Kaminski, T., Rayner, P., Knorr, W. & Giering, R. (2007). Propagating uncertainty through prognostic carbon cycle data assimilation system simulations. J. Geophys. Res., 112, D17305.
  • Smith, B., Prentice, I.C. & Sykes, M.T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within european climate space. Glob. Ecol. Biogeogr., 10, 621637.
  • Stöckli, R., Lawrence, D.M., Niu, G.Y., Oleson, K.W., Thornton, P.E., Yang, Z.L. et al. (2008). Use of FLUXNET in the community land model development. J. Geophys. Res., 113, G01025.
  • Tang, J. & Zhuang, Q. (2009). A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem Model, J. Geophys. Res. 114: D15303, doi: 10.1029/2009JD011724.
  • Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, SIAM.
  • Thiemann, M., Trosset, M., Gupta, H.V. & Sorooshian, S. (2001). Bayesian recursive parameter estimation for hydrologic models. Water Resour. Res., 37, 25212535.
  • Thuiller, W. (2003). BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol., 9, 13531362.
  • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32, 369373.
  • Trudinger, C.M., Raupach, M.R., Rayner, P.J., Kattge, J., Liu, Q., Pak, B. et al. (2007). OptIC project: an intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models. J. Geophys. Res., 112, G02027.
  • Turner, D.P., Ollinger, S.V. & Kimball, J.S. (2004). Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle. Bioscience, 54, 573584.
  • Van Campo, E., Guiot, J. & Peng, C.H. (1993). A data-based re-appraisal of the terrestrial carbon budget at the Last Glacial Maximum. Global Planet. Change, 8, 189201.
  • Verstraeten, W.W., Veroustraete, F., Heyns, W., Roey, T.V. & Feyen, J. (2008). On uncertainties in carbon flux modelling and remotely sensed data assimilation: the Brasschaat pixel case. Adv. Space Res., 41, 2035.
  • Vrugt, J.A., Diks, C.G.H., Gupta, H.V., Bouten, W. & Verstraten, J.M. (2005). Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation. Water Resour. Res., 41, W01017.
  • Wang, Y.-P., Trudinger, C.M. & Enting, I.G. (2009). A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales. Agr. Forest Meteorol., 149, 18291842.
  • Williams, M., Schwarz, P.A., Law, B.E., Irvine, J. & Kurpius, M.R. (2005). An improved analysis of forest carbon dynamics using data assimilation. Glob. Change Biol., 11, 89105.
  • Williams, M., Richardson, A.D., Reichstein, M., Stoy, P.C., Peylin, P., Verbeeck, H. et al. (2009). Improving land surface models with FLUXNET data. Biogeosciences, 6, 27852835.
  • Wu, H., Guiot, J., Brewer, S. & Guo, Z. (2007a). Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dyn., 29, 211229.
  • Wu, H., Guiot, J., Brewer, S., Guo, Z. & Peng, C. (2007b). Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proc. Natl. Acad. Sci. USA, 104, 97209724.
  • Wu, H.B., Guiot, J., Peng, C.H. & Guo, Z.T. (2009). A new coupled vegetation-carbon model used in inverse mode for reconstructing terrestrial carbon storage from pollen data: its validation using modern data. Glob. Change Biol., 15, 8295.
  • Xu, T., White, L., Hui, D. & Luo, Y. (2006). Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochem. Cycles, 20, GB2007.
  • Zhou, T. & Luo, Y. (2008). Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States. Global Biogeochem. Cycles, 22, GB3032.