SEARCH

SEARCH BY CITATION

Keywords:

  • Alkaloids;
  • defence evolution;
  • floral chemistry;
  • herbivory;
  • mating system;
  • mutualism;
  • Nicotiana;
  • nicotine;
  • pleiotropy

Abstract

Defensive traits are typically studied in the context of avoiding antagonists, but may also mediate key interactions with mutualists. Plant chemical defences occur in flowers, suggesting pollinators may be agents of selection on defence. We hypothesised that floral defences would deter pollinators, and therefore, pollinators would select for lower defences in outcrossing than self-pollinating species. We measured pollinator reliance and alkaloid levels in 32 greenhouse-grown Nicotiana species. Using a comparative phylogenetic approach, we found significantly lower nectar, floral and leaf nicotine concentrations in outcrossing than selfing species, with a 15-fold decrease in leaf nicotine levels. Nicotine concentrations were positively correlated across tissues, suggesting that selection against floral defences could constrain the evolution of leaf defences. Thus, pollinators could shape the evolution not only of floral defences but also of defences in other tissues where herbivores have traditionally been considered the dominant agent of selection.