SEARCH

SEARCH BY CITATION

References

  • Andersen, S.B. (2011). Dynamics of ant-microbial interactions: coevolution along the parasitism-mutualism continuum. PhD Thesis, University of Copenhagen, Denmark.
  • Archetti, M. (2011). Contract theory for the evolution of cooperation: the right incentives attract the right partners. J. Theor. Biol., 269, 201207.
  • Archetti, M. & Scheuring, I. (2012). Review: cooperation in one-shot social dilemmas without assortment. J. Theor. Biol., 299, 920.
  • Archetti, M., Scheuring, I., Hoffman, M., Frederickson, M.E., Pierce, N.E. & Yu, D.W. (2011a). Economic game theory for mutualism and cooperation. Ecol. Lett., 14, 13001312.
  • Archetti, M., Úbeda, F., Fudenberg, D., Green, J., Pierce, N.E. & Yu, D.W. (2011b). Let the right one in: a microeconomic approach to partner choice in mutualisms. Am. Nat., 177, 7585.
  • Barke, J., Seipke, R.F., Gruschow, S., Heavens, D., Drou, N., Bibb, M.J. et al. (2010). A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol., 8, 109.
  • Barke, J., Seipke, R.F., Yu, D.W. & Hutchings, M.I. (2011). A mutualistic microbiome: how do fungus-growing ants select their antibiotic-producing bacteria? Commun. Integr. Biol., 4, 13.
  • Benson, A.K., Kelly, S.A., Legge, R., Ma, F., Low, S.J., Kim, J. et al. (2010). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA, 107, 1893318938.
  • Cafaro, M.J., Poulsen, M., Little, A.E.F., Price, S.L., Gerardo, N.M., Wong, B. et al. (2011). Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc. R. Soc. Lond. B, 278, 18141822.
  • Caldera, E.J., Poulsen, M., Suen, G. & Currie, C.R. (2009). Insect symbioses: a case study of past, present, and future fungus-growing ant research. Environ. Entomol., 38, 7892.
  • Challis, G.L. & Hopwood, D.A. (2003). Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. USA, 100(Suppl 2), 1455514561.
  • Chaston, J. & Goodrich-Blair, H. (2010). Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol. Rev., 34, 4158.
  • Currie, C.R., Scott, J.A., Summerbell, R.C. & Malloch, D. (1999). Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature, 398, 701704.
  • Currie, C.R., Poulsen, M., Mendenhall, J., Boomsma, J.J. & Billen, J. (2006). Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science, 311, 8183.
  • Dethlefsen, L. & Relman, D.A. (2010). Microbes and Health Sackler Colloquium: incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA, 108(Suppl 1), 45544561.
  • Dethlefsen, L., McFall-Ngai, M. & Relman, D.A. (2007). An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature, 449, 811818.
  • Fernández-Marín, H., Zimmerman, J.K., Nash, D.R., Boomsma, J.J. & Wcislo, W.T. (2009). Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc. R. Soc. Lond. B, 276, 22632269.
  • Goettler, W., Kaltenpoth, M., Herzner, G. & Strohm, E. (2007). Morphology and ultrastructure of a bacteria cultivation organ: the antennal glands of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). Arthropod. Struct. Dev., 36, 19.
  • Haeder, S., Wirth, R., Herz, H. & Spiteller, D. (2009). Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA, 106, 47424746.
  • Kaltenpoth, M. (2009). Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol., 17, 529535.
  • Konopka, A. (2009). What is microbial community ecology? ISME J., 3, 12231230.
  • Kost, C., Lakatos, T., Böttcher, I., Arendholz, W.-R., Redenbach, M. & Wirth, R. (2007). Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften, 94, 821828.
  • Levin, S.A. (1974). Dispersion and population interactions. Am. Nat., 108, 207228.
  • Levin, B.R. & Udekwu, K.I. (2010). Population dynamics of antibiotic treatment: a mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrob. Agents Chemother., 54, 34143426.
  • Manichanh, C., Reeder, J., Gibert, P., Varela, E., Llopis, M., Antolin, M. et al. (2010). Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res., 20, 14111419.
  • Mao-Jones, J., Ritchie, K.B., Jones, L.E. & Ellner, S.P. (2010). How microbial community composition regulates coral disease development. PLoS Biol., 8, e1000345.
  • Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H.M. et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 10971100.
  • Muegge, B.D., Kuczynski, J., Knights, D., Clemente, J.C., González, A., Fontana, L. et al. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332, 970974.
  • Mueller, U.G. (2012). Symbiont recruitment versus ant-symbiont co-evolution in the attine ant–microbe symbiosis. Curr. Opin. Microbiol., 15, 19.
  • Mueller, U.G., Dash, D., Rabeling, C. & Rodrigues, A. (2008). Coevolution between attine ants and actinomyete bacteria: a reevaluation. Evolution, 62, 28942912.
  • Mueller, U.G., Ishak, H., Lee, J.C., Sen, R. & Gutell, R.R. (2010). Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models. Antonie Van Leeuwenhoek, 98, 195212.
  • Nowak, M.A., Bonhoeffer, S. & May, R.M. (1994). Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA, 91, 48774881.
  • Ochman, H., Worobey, M., Kuo, C., Ndjango, J., Peeters, M., Hahn, B. et al. (2010). Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol., 8, e1000546.
  • Pepper, J.W. & Rosenfeld, S. (2012). The emerging medical ecology of the human gut microbiome. Trends Ecol. Evol., 27, 381384.
  • Poulsen, M. & Currie, C.R. (2010). Symbiont interactions in a tripartite mutualism: exploring the presence and impact of antagonism between two fungus-growing ant mutualists. PLoS ONE, 5, e8748.
  • Poulsen, M., Bot, A.N.M., Currie, C.R. & Boomsma, J.J. (2002). Mutualistic bacteria and a possible trade-off between alternative defence mechanisms in Acromyrmex leaf-cutting ants. Insectes Soc., 49, 1519.
  • Poulsen, M., Erhardt, D.P., Molinaro, D.J., Lin, T.L. & Currie, C.R. (2007). Antagonistic bacterial interactions help shape host-symbiont dynamics within the fungus-growing ant-microbe mutualism. PLoS ONE, 2, e960.
  • Prosser, J.I., Bohannan, B.J.M., Curtis, T.P., Ellis, R.J., Firestone, M.K., Freckleton, R.P. et al. (2007). The role of ecological theory in microbial ecology. Nat. Rev. Microbiol., 5, 384392.
  • Read, A.F., Day, T. & Huijben, S. (2011). The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc. Natl. Acad. Sci. USA, 108 (Suppl 2), 1087110877.
  • Ritchie, K. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser., 322, 114.
  • Schoenian, I., Spiteller, M., Ghaste, M., Wirth, R., Herz, H. & Spiteller, D. (2011). Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc. Natl. Acad. Sci. USA, 108, 19551960.
  • Seipke, R.F., Barke, J., Brearley, C., Hill, L., Yu, D.W., Goss, R.J.M. et al. (2011). A single Streptomyces mutualist makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE, 6, e22028.
  • Seipke, R.F., Barke, J., Ruiz-Gonzalez, M.X., Orivel, J., Yu, D.W. & Hutchings, M.I. (2012a). Fungus-growing Allomerus ants are associated with antibiotic-producing Actinobacteria. Antonie Van Leeuwenhoek, 101, 443447.
  • Seipke, R.F., Kaltenpoth, M. & Hutchings, M.I. (2012b). Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev, 36, 862876.
  • Sen, R., Ishak, H.D., Estrada, D., Dowd, S.E., Hong, E. & Mueller, U.G. (2009). Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc. Natl. Acad. Sci. USA, 106, 1780517810.
  • Soler, J.J., Martin-Vivaldi, M., Ruiz-Rodriguez, M., Valdivia, E., Martin-Platero, A.M., Martinez-Bueno, M. et al. (2008). Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct. Ecol., 22, 864871.
  • Taylor, M.W., Radax, R., Steger, D. & Wagner, M. (2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev., 71, 295347.
  • White, J.R., Nagarajan, N. & Pop, M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol., 5, e1000352.
  • Wright, G.D. (2010). Antibiotic resistance in the environment: a link to the clinic? Curr. Opin. Microbiol., 13, 589594.
  • Yu, D.W. & Wilson, H.B. (2001). The competition-colonization trade-off is dead; long live the competition-colonization trade-off. Am. Nat., 158, 4963.