SEARCH

SEARCH BY CITATION

References

  • Abken, H., Tietze, M., Brodersen, J., Baumer, S., Beifuss, U., and Deppenmeier, U. (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180: 20272032.
  • Afkar, E., Reguera, G., Schiffer, M., and Lovley, D.R. (2005) A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. Biomed Central Microbiol 5: 41.
  • Ballapragada, B.S., Stensel, H.D., Puhakka, J.A., and Ferguson, J.F. (1997) Effect of hydrogen on reductive dehalogenation of chlorinated ethenes. Environ Sci Technol 31: 17281734.
  • Beatty, J.T., Overmann. J., Lince, M.T., Manske. A.K., Lang, A.S., Blankenship. R.E., et al. (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Nat Acad Sci USA 102: 93069310.
  • Beech, I.B., and Sunner, J. (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotech 15: 181118.
  • Bond, D.R., and Lovley, D.R. (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69: 15481555.
  • Bond, D.R., Holmes, D.E., Tender, L.M., and Lovley, D.R. (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483485.
  • Boone, D.R., and Bryant, M.P. (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp.nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40: 626632.
  • Boone, D.R., Johnson, R.L., and Liu, Y. (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and implications in the measurement of KM for H2 or formate uptake. Appl Environ Microbiol 55: 17351741.
  • Bradley, P.M. (2003) History and ecology of chloroethene biodegradation: a review. Bioremed J 7: 81109.
  • Bradley, P.M., and Chapelle, F.H. (1999) Methane as a product of chloroethene biodegradation under methanogenic conditions. Environ Sci Technol 33: 653656.
  • Bryant, M.P., Wolin, E.A., Wolin, M.J., and Wolfe, R.S. (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 59: 2031.
  • Bryant, M.P., Campbell, L.L., Reddy, C.A., and Crabill, M.R. (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utlizing methanogenic bacteria. Appl Environ Microbiol 33: 11621169.
  • Cervantes, F.J., Dijksma, W., Duong-Dac, T., Ivanova, A., Lettinga, G., and Field, J.A. (2001) Anaerobic mineralization of toluene enriched sediments with quionones and humus as terminal electron acceptors. Appl Environ Microbiol 67: 44714478.
  • Cervantes, F.J., De Bok, F.A.M., Duong-Dac, T., Stams, A.J.M., Lettinga, G., and Field, J.A. (2002) Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 42: 215222.
  • Chaudhuri, S.K., and Lovley, D.R. (2003) Electricity from direct oxidation of glucose in mediator-less microbial fuel cells. Nat Biotechnol 21: 12291232.
  • Coleman, M.L., Hedrick, D.B., Lovley, D.R., White, D.C., and Pye, K. (1993) Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361: 436438.
  • Cord-Ruwisch, R., Lovley, D.B., and Schink, B. (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64: 22322236.
  • Curtis, C., and Reinhard, M. (1994) Reductive dehalogenation of hexachloroethane, carbon tetrachloride and bromoform by anthraquinone disulphonate and humic acid. Environ Sci Technol 28: 23932401.
  • De Bok, F.A.M., Luijten, M.L.G.C., and Stams, A.J.M. (2002) Biochemical evidence for formate transfer in syntrophic propionate oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl Environ Microbiol 68: 42474252.
  • De Bok, F.A.M., Hagedoorn, P.L., Silva, P.J., Hagen, W.R., Schiltz, E., Fritsche, K., and Stams, A.J.M. (2003) Two W-containing formate dehydrogenases (CO2 reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270: 24762485.
  • De Wever, H., Cole, J.R., Fettig, M.R., Hogan, D.A., and Tiedje, J.M. (2000) Reductive dechlorination of trichloroacetic acid by Trichlorobacter thiogenes gen.nov., sp.nov. Appl Environ Microbiol 66: 22972301.
  • Delaney, G.M., Bennetto, H.P., Mason, J.R., Roller, S.D., Stirling, J.I., and Thurston, C.F. (1984) Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. J Chem Technol Biot 34B: 1327.
  • DeWeerd, K.A.A., Mandelco, L., Tanner, R.S., Woese, C.R., and Suflita, J.M. (1990) Desulfomonile tiedjei gen. nov., sp. nov., a novel, anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154: 2330.
  • Dinh, H.T., Kuever, J., Muβmann, M., Hassel, A.W., Stratmann, M., and Widdel, F. (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427: 829832.
  • Distefano, T.D., Gossett, J.M., and Zinder, S.H. (1992) Hydrogen as electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol 58: 36223629.
  • Dolfing, J. (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153: 264266.
  • Dolfing, J., and Tiedje, J.M. (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch Microbiol 149: 102105.
  • Dolfing, J., and Tiedje, J.M. (1991) Kinetics of two complementary hydrogen sink reactions in a defined 3-chlorobenzoate degrading methanogenic co-culture. FEMS Microbiol Ecol 86: 2532.
  • Dong, X., and Stams, A.J.M. (1995) Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1: 3539.
  • Dos Santos, A.B., Bisschop, I.A., Cervantes, F.J., and Van Lier, J.B. (2004) Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30°C) and thermophilic (55°C) treatments for decoulorisation of textile wastewater. Chemosphere 55: 11491157.
  • Emde, R., and Schink, B. (1990) Anaerobic oxidation of glycerol, lactate, and propionate by Propionibacterium freundenreichii in a poised potential amperometric culture system. Arch Microbiol 153: 506512.
  • Fennell, D.E., Gossett, J.M., and Zinder, S.H. (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31: 918926.
  • Finster, K., Liesack, W., and Thamdrup, B. (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64: 119125.
  • Frederickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.W., and Krupka, K.M. (2000) Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Ac 64: 30853098.
  • Freund, F., Dickinson, J.T., and Cash, M. (2002) Hydrogen in rocks: an energy source for deep microbial communities. Astrobiology 2: 8392.
  • Gaspard, S., Vazquez, F., and Holliger, C. (1998) Localization and solubilization of the Iron(III) reductase of Geobacter sulfurreducens. Appl Environ Microbiol 64: 31883194.
  • Gerritse, J., Borger, A., Van Heiningen, E., Rijnaarts, H.H.M., Bosma, T.N.P., Taat, J., et al. (1999) Assessment and monitoring of 1,2-dichloroethane. In Engineered Approaches for in situ Bioremediation of Chlorinated Solvent Contamination. Leeson, A., and Alleman, B.C. (eds). Columbus, OH: Batelle Press, pp. 7380.
  • Gibson, S.A., and Sewell, G.W. (1992) Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids of alcohols. Appl Environ Microbiol 58: 13921393.
  • Gregory, K.B., Bond, D.R., and Lovley, D.R. (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6: 596604.
  • He, Z., Minteer, S.D., and Angenent, L.T. (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39: 52625267.
  • Hedderich, R. (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 31: 6575.
  • Heidelberg, J.F., Seshadri, R., Haveman, S.A., Hemme, C.L., Paulsen, I.T., Kolonay, J.F., et al. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554559.
  • Hernandez, M.E., and Newman, D.K. (2001) Extracellular electron transfer. Cell Mol Life Sci 58: 15621571.
  • Holmes, D.E., Bond, D.R., O'Neil, R.A., Reimers, C.E., Tender, L.R., and Lovley, D.R. (2004) Microbial communities associated with electrodes harvested electricity from a variety of aquatic sediments. Microbiol Ecol 48: 178190.
  • Kaden, J., Galushko, A., and Schink, B. (2002) Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol 178: 5358.
  • Karyakin, A.A., Morozov, S.V., Karyakina, E.E., Varfolomeyev, S.D., Zorin, N.A., and Cosnier, S. (2002) Hydrogen fuel electrode based on biocatalysis by the enzyme hydrogenase. Electrochem Commun 4: 417420.
  • Kaufmann, F., and Lovley, D.R. (2001) Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J Bacteriol 183: 44684476.
  • Kim, B.C., Leang, C., Ding, Y.H., Glaven, R.H., Coppi, M.V., and Lovley, D.R. (2005) OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. J Bacteriol 187: 45054513.
  • Krumholz, L.R., and Bryant, M.P. (1986) Syntrophococcus sucromutans sp.nov gen nov uses carbohydrates as electron donors and formate, methoxybenzonoids or Methanobrevibacter as electron acceptor systems. Appl Environ Microbiol 143: 313318.
  • Lamle, S.E., Halliwell, L.M., Armstrong, F.A., and Albracht, S.P. (2003) The electrochemical interconversions between the active and inactive states of a [Ni-Fe]-hydrogenase; implications for the development of the biofuel cell. J Inorg Biochem 96: 174.
  • Liu, H., and Logan, B.E. (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38: 40404046.
  • Liu, H., Grot, S., and Logan, B.E. (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39: 43174320.
  • Löffler, F.E., Tiedje, J.M., and Sanford, R.A. (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65: 40494056.
  • Lovley, D.R. (2000) Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes (electronic 3rd edn). Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer Verlag (without page numbers).
  • Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Hayes, L.A., Philips, E.J.P., and Woodward, J. (1996a) Humic substances as electron acceptors for microbial respiration. Nature 382: 445448.
  • Lovley, D.R., Woodward, J., and Chapelle, E.J. (1996b) Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 62: 288291.
  • Lovley, D.R., Fraga, J.L., Coates, J.D., and Blunt-Harris, E.L. (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1: 8998.
  • Lovley, D.R., Holmes, D.E., and Nevin, K.P. (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49: 219286.
  • Lueders, T., Pommerenke, B., and Friedrich, M.W. (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70: 57785786.
  • Luijten, M.L.G.C., Roelofsen, W., Langenhoff, A.A.M., Schraa, G., and Stams, A.J.M. (2004a) Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at sites polluted with chlorinated ethenes. Environ Microbiol 6: 646650.
  • Luijten, M.L.G.C., Weelink, S.A.B., Godschalk, B., Langenhoff, A.A.M., Van Eekert, M.H.A., Schraa, G., and Stams, A.J.M. (2004b) Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. FEMS Microbiol Ecol 49: 145150.
  • Magnuson, T.S., Isoyama, N., Hodges-Myerson, A.L., Davidson, G., Maroney, M.J., Geesey, G.G., and Lovley, D.R. (2001) Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochem J 359: 147152.
  • Min, B., and Logan, B.E. (2004) Continuous electricity generation from domestic wastewater organic substrates in a flat plane microbial fuel cell. Environ Sci Technol 38: 58095814.
  • Murakami, E., Deppenmeier, U., and Ragsdale, S.W. (2001) Characterization of the intramolecular electron transfer pathway from 2-hydroxyphenazine to the heterodisulfide reductase from Methanosarcina thermophila. J Biol Chem 276: 24322439.
  • Nealson, K.H., and Saffarini, D.A. (1994) Iron and manganese in anaerobic respiration. Annu Rev Microbiol 48: 311343.
  • Nealson, K.H., Inagaki, F., and Takai, K. (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13: 405410.
  • Niggemeyer, A., Spring, S., Stackebrandt, E., and Rosenzweig, R.F. (2001) Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfobacterium. Appl Environ Microbiol 76: 55685580.
  • Odom, J.M., and Peck, H.D. (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12: 4750.
  • Oremland, R.S., Capone, D.G., Stolz, J.F., and Fuhrman, J. (2005) Whither and wither geomicrobiology in the era of ‘community metagenomics’. Nat Rev Microbiol 3: 572578.
  • Plugge, C.M., and Stams, A.J.M. (2005) Syntrophism among clostridiales. In Handbook on Clostridia. Dürre, P. (ed.). Boca Raton, FL, USA: Tayler & Francis, pp. 769784.
  • Plugge, C.M., Balk, M., Zoetendal, E.G., and Stams, A.J.M. (2002) Gelria glutamica, gen.nov., sp.nov., a thermophilic obligate syntrophic glutamate-degrading anaerobe. Int J Syst Evol Microbiol 52: 401407.
  • Rabaey, K., and Verstraete, W. (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23: 291298.
  • Rabaey, K., Lissens, G., Siciliano, S.D., and Verstraete, W. (2003) A microbial biofuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25: 15311535.
  • Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M., and Verstraete, W. (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70: 53735382.
  • Rabaey, I., Boon, N., Höfte, M., and Verstraete, W. (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39: 34013408.
  • Reguera, G., McCarthy, K.D., Mehta, T., Nicoli, J.S., Tuominen, M.T., and Lovley, D.R. (2005) Extracellular electron transfer via microbial nanowires. Nature 435: 10981101.
  • Robinson, J.A., and Tiedje, J.M. (1984) Competition between sulphate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137: 2632.
  • Rozendal, R.A., Hamelers, H.V.M., Euverink, G.J.W., Metz, S.J., and Buisman, C. (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy (in press).
  • Samain, E., Dubourguier, H.C., LeGall, J., and Albagnac, G. (1986) Regulation of hydrogenase activity in the propionate-oxidizing sulfate-reducing bacterium Desulfobulbus elongatus. In Biology of Anaerobic Bacteria. Dubourguier, H.C., Albagnac, G., Montreuil, J., Romond, C., Sautiere, P., and Guillaume, J. (eds). Amsterdam, the Netherlands: Elsevier, pp. 2327.
  • Schink, B. (1997) Energetics of syntrophic cooperations in methanogenic degradation. Microbiol Mol Biol Rev 61: 262280.
  • Schink, B., and Stams, A.J.M. (2002) Syntrophism among prokaryotes. In The Prokaryotes (electronic 3rd edn). Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer Verlag (without page numbers).
  • Schwarzenbach, R., Stierli, R., Lanz, K., and Zeyer, J. (1990) Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ Sci Technol 24: 15661674.
  • Seeliger, S., Cord-Ruwisch, R., and Schink, B. (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180: 36863891.
  • Shelton, D.R., and Tiedje, J.M. (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl Environ Microbiol 48: 840848.
  • Smatlak, C.R., Gossett, J.M., and Zinder, S.H. (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30: 28502858.
  • Smidt, H., and De Vos, W.M. (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58: 4373.
  • Stams, A.J.M., and Dong, X. (1995) Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria. Antonie Van Leeuwenhoek 68: 281284.
  • Stams, A.J.M., and Hansen, T.A. (1984) Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen.nov., sp.nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch Microbiol 137: 329337.
  • Stams, A.J.M., Oude Elferink, S.J.W.H., and Westermann, P. (2003) Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Adv Biochem Eng Biotechnol 81: 3156.
  • Stams, A.J.M., Plugge, C.M., De Bok, F.A.M., Van Houten, B.H.G.W., Lens, P., Dijkman, H., and Weijma, J. (2005) Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol 52: 1320.
  • Stevens, T.O., and McKinley, J.P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270: 450454.
  • Stolz, J.F., and Oremland, R.S. (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23: 615627.
  • Straub, K.L., and Schink, B. (2003) Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol Lett 220: 229233.
  • Straub, K.L., and Schink, B. (2004) Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70: 57445749.
  • Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., et al. (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20: 821825.
  • Thiele, J.H., and Zeikus, J.G. (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54: 2029.
  • Turick, C.E., Tisa, L.S., and Caccavo, F., , Jr (2002) Melanin production and use as soluble electron shuttle for Fe(III) oxide reduction and terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68: 24362444.
  • Turick, C.E., Caccavo, F., , Jr, and Tisa, L.S. (2003) Electron transfer from Shewanella algae BrY to hydrous ferric oxide is mediated by cell-associated melanin. FEMS Microbiol Lett 220: 99104.
  • Turner, A.P.F., Ramsay, G., and Higgins, I.J. (1983) Applications of electron transfer between biological systems and electrodes. Biochem Soc Trans 11: 445448.
  • Van Bodegom, P.M., Scholten, J.C.M., and Stams, A.J.M. (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49: 261268.
  • Van Kuijk, B.L.M., Schlösser, E., and Stams, A.J.M. (1998) Investigation of the fumarate metabolism of the syntrophic propionate oxidizing bacterium strain MPOB. Arch Microbiol 169: 346352.
  • Van der Zee, F.P., Lettinga, G., and Field, J.A. (2000) Azo dye decolourisation by anaerobic granular sludge. Chemosphere 44: 11691176.
  • Vincent, K.A., Cracknell, J.A., Lenz, O., Zebger, I., Friedrich, B., and Armstrong, F.A. (2005) Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proc Nat Acad Sci USA 102: 1695116954.
  • Yang, Y., and McCarty, P.L. (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32: 35913597.
  • Zindel, U., Freudenberg, W., Rieth, M., Andreesen, J.R., Schnell, J., and Widdel, F. (1988) Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch Microbiol 150: 254266.