Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea

Authors


  • Present address: Institute of Freshwater Ecology and Inland Fisheries, Department of Limnology of Stratified Lakes, Alte Fischerhuette 2, D-16775 Neuglobsow, Germany; Department of Applied Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.

*E-mail hgrossart@igb-berlin.de; Tel. (+49) 33082 699 91; Fax (+49) 33082 699 17.

Summary

Aggregation of algae, mainly of diatoms, is an important process in marine pelagic systems, often terminating phytoplankton blooms and leading to the sinking of particulate organic matter in the form of marine snow. This process has been studied extensively, but the specific role of heterotrophic bacteria has largely been neglected, mainly because field studies and most experimental work were performed under non-axenic conditions. We tested the hypothesis that algae–bacteria interactions are instrumental in aggregate dynamics and organic matter flux. A series of aggregation experiments has been carried out in rolling tanks with two marine diatoms typical of temperate regions (Skeletonema costatum and Thalassiosira rotula) in an axenic treatment and one inoculated with marine bacteria. Exponentially growing S. costatum and T. rotula exhibited distinctly different aggregation behavior. This was reflected by their strikingly different release of dissolved organic matter (DOM), transparent exopolymer particles (TEP) and protein-containing particles (CSP), as well as their bacterial biodegradability and recalcitrance. Cells of S. costatum aggregated only little and their bacterial colonization remained low. Dissolved organic matter, TEP and CSP released by this alga were largely consumed by free-living bacteria. In contrast, T. rotula aggregated rapidly and DOM, TEP and CSP released resisted bacterial consumption. Experiments conducted with T. rotula cultures in the stationary growth phase, however, showed rapid bacterial colonization and decomposition of algal cells. Our study highlights the importance of heterotrophic bacteria to control the development and aggregation of phytoplankton in marine systems.

Ancillary