Identification and analysis of four candidate symbiosis genes from ‘Chlorochromatium aggregatum’, a highly developed bacterial symbiosis


E-mail; Tel. (+49) 89 2180 6123; Fax (+49) 89 2180 6125.


The consortium ‘Chlorochromatium aggregatum’ currently represents the most highly developed interspecific association between prokaryotes. It consists of green sulfur bacteria, so-called epibionts, which surround a central, motile, chemotrophic bacterium. Four putative symbiosis genes of the epibiont were recovered by suppression subtractive hybridization and bioinformatics approaches. These genes are transcribed constitutively and do not occur in the free-living relatives of the epibiont. The haemagglutinin-like putative gene products of open reading frames (ORFs) Cag0614 and Cag0616 are unusually large and contain repetitive regions and RGD tripeptides. Cag0616 harbours two βγ-crystalline Greek key motifs. Cag1920 codes for a putative haemolysin whereas the gene product of Cag1919 is a putative RTX-like protein. Based on detailed analyses of Cag1919, the C-terminal amino acid sequence comprises six repetitions of the motif GGXGXD predicted to form a Ca2+-binding beta roll. Intact ‘C. aggregatum’ consortia disaggregated upon the addition of EGTA or pyrophosphate, but stayed intact in the presence of various lectine-binding sugars or proteolytic enzymes. Unlike other RTX toxins, a gene product of Cag1919 could not be detected by 45Ca2+ autoradiography, indicating a low abundance of the corresponding protein in the cells. The RTX-type C-terminus coded by Cag1919 exhibited a significant similarity to RTX modules of various proteobacterial proteins, suggesting that this putative symbiosis gene has been acquired via horizontal gene transfer from a proteobacterium.