SEARCH

SEARCH BY CITATION

References

  • Anisimov, O.A. (2007) Potential feedback of thawing permafrost to the global climate system through methane emission. Environ Res Lett 2: 045016 (7pp).
  • Anisimov, O.A., and Reneva, S.A. (2006) Permafrost and changing climate: the Russian perspective. Ambio 35: 169175.
  • Bartlett, K.B., and Harriss, R.C. (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26: 261320.
  • Brand, W.A. (1995) PreCon: a fully automated interface for the Pre-Gc concentration of trace gases on air for isotopic analysis. Isot Environ Health Stud 31: 277284.
  • Cadillo-Quiroz, H., Yashiro, E., Yavitt, J.B., and Zinder, S.H. (2008) Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74: 20592068.
  • Cao, M., Gregson, K., and Marshall, S. (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmos Environ 32: 32933299.
  • Colwell, F.S., Nunoura, T., Delwiche, M.E., Boyd, S., Bolton, R., Reed, D., et al. (2005) Evidence of minimal methanogenic numbers and activity in sediments collected from the Mallik 5L-38 gas hydrate research well. In Geological Survey of Canada Bulletin 585. Dallimore, S.R., and Collett, T.S. (eds). Ottawa, Ontario, Canada: Geological Survey of Canada.
  • Cramer, B., and Franke, D. (2005) Indication for an active petroleum system in the Laptev Sea, NE Siberia. J Petrol Geol 28: 369384.
  • Dianou, D., Miyaki, T., Asakawa, S., Morii, H., Nagaoka, K., Oyaizu, H., and Matsumoto, S. (2001) Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA–DNA hybridization among Methanoculleus species. Int J Syst Evol Microbiol 51: 16631669.
  • Ferdelman, T.G., Lee, C., Pantoja, S., Harder, J., Bebout, B.M., and Fossing, H. (1997) Sulfate reduction and methanogenesis in a Thioploca-dominated sedimentoff the coast of Chile. Geochimica Cosmochimica Acta 61: 30653079.
  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. SolomonS., QinD., ManningM., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., et al. (eds). Cambridge, UK: Cambridge University Press, pp. 129234.
  • Franzmann, P.D., Roberts, N.J., Mancuso, C.A., Burton, H.R., and McMeekin, T.A. (1991) Methane production in meromictic Ace Lake, Antartica. Hydrobiologia 210: 191201.
  • Franzmann, P.D., Springer, N., Ludwig, W., De Macario, E.C., and Rohde, M. (1992) A methanogenic archaeon from Ace Lake, Antarctica – Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15: 573558.
  • Franzmann, P.D., Liu, Y., Balkwill, D.L., Aldrich, H.C., Conway de Macario, E., and Boone, D.R. (1997) Methanogenium frigidium sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47: 10681072.
  • Ganzert, L., Jurgens, G., Münster, U., and Wagner, D. (2007) Methanogenic communities in permafrost-affected soils on the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59: 476488.
  • Gilichinsky, D., Rivkina, E., Bakermans, C., Shcherbakova, V., Petrovskaya, L., Ozerskaya, S., et al. (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53: 117128.
  • Grosse, G. (2005) Characterisation and evolution of periglacial landscapes in Northern Siberia during the Late Quaternary – Remote sensing and GIS studies. Dissertation Thesis. University of Potsdam, Germany, Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Germany.
  • Hogg, E.H. (1993) Decay potential of hummock and hollow Sphagnum peats at different depths in a Swedish raised bog. Oikos 66: 269278.
  • Høj, L., Olsen, R.A., and Torsvik, V.L. (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterised by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53: 89101.
  • Jurgens, G., Glockner, F., Amann, R., Saano, A., Montonen, L., Likolammi, M., and Munster, U. (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34: 4556.
  • Khvorostyanov, D.V., Ciais, P., Krinner, G., Zimov, S.A., Corradi, C., and Guggenberger, G. (2008) Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus 60B: 265275.
  • King, G.M. (1984) Utilization of hydrogen, acetate, and ‘noncompetitive’ substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3: 275306.
  • Kobabe, S., Wagner, D., and Pfeiffer, E.M. (2004) Characterization of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50: 1323.
  • MacGregor, B.J., Moser, D.P., Alm, E.W., Nealson, K.H., and Stahl, D.A. (1997) Crenarchaeota in Lake Michigan sediment. Appl Environ Microbiol 63: 11781181.
  • Mangelsdorf, K., Haberer, R.M., Zink, K.G., Dieckmann, V., Wilkes, H., Horsfield, B. (2005) Molecular indicators for the occurrence of deep microbial communities at the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. In: Scientific Results from Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada Bulletin 585. Dallimore, S.R., and Collett, T.S. (eds). Ottawa, Ontario, Canada: Geological Survey of Canada, Microbiology section, pp. 1829.
  • Mann, M.E., Bradley, R.S., and Hughes, M.K. (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26: 759762.
  • Marchesi, J.R., Weightman, A.J., Cragg, B.A., Parkes, R.J., and Fry, J.C. (2001) Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol 34: 221228.
  • Morozova, D., and Wagner, D. (2007) Stress response of methanogenic archaea from Siberian permafrost compared to methanogens from non-permafrost habitats. FEMS Microbiol Ecol 61: 1625.
  • Oldfield, F., and Alverson, K. (2003) The societal relevance of paleoenvironmental research. In Paleoclimate, Global Change and the Future. Alverson, K.D., Bradley, R.S., Pederson, T.F. (eds). Berlin, Germany: Springer, pp. 111.
  • Oremland, R.S., and Polcin, S. (1982) Methanogenesis and sulphate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44: 12701276.
  • Overduin, P. (2007) Russian–German Cooperation SYSTEM LAPTEV SEA: the Expedition COAST I. Ber Polarforsch Meeresforsch 550: 139.
  • Overduin, P., Rachold, V., and Grigoriev, M.N. (2008) The state of subsea permafrost in the Western Laptev Nearshore Zone. In Ninth International Conference on Permafrost. Kane, D.L., and Hinkel, K.M. (eds). Fairbanks, AK, USA: Institute of Northern Engineering University of Alaska Fairbanks (2 Vols), pp. 13451350.
  • Peng, J., Lu, Z., Rui, J., and Lu, Y. (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74: 28942901.
  • Rachold, V., Alabyan, A., Hubberten, H.-W., Korotaev, V.N., and Zaitsev, A.A. (1996) Sediment transport to the Laptev Sea – hydrology and geochemistry of the Lena river. Polar Res 15: 183196.
  • Rachold, V., Bolshiyanov, D.Y., Grigoriev, M.N., Hubberten, H.W., Junker, R., Kunitsky, V.V., et al. (2007) Nearshore Arctic subsea permafrost in transition. EOS 88: 149150.
  • Ramakrishnan, B., Lueders, T., Dunfield, P.F., Conrad, R., and Friedrich, M.W. (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37: 175186.
  • Rice, D.D. (1992) Controls, habitat, and resource potential of ancient bacterial gas. In Bacterial Gas. ViallyR. (ed.). Paris, France: Éditions Technip, pp. 91118.
  • Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V., and Gilichinsky, D. (2004) Microbial life in permafrost. Adv Space Res 33: 12151221.
  • Rivkina, E., Shcherbakova, V., Laurinavichius, K., Petrovskaya, L., Krivushin, K., Kraev, G., et al. (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61: 115.
  • Rivkina, E.M., and Gilichinsky, D.A. (1996) Methane as a paleoindicator of the dynamics of permafrost deposits. Limnol Miner Resour 31: 396399.
  • Rivkina, E.M., Gilichinsky, D., Wagener, S., Tiedje, J., and McGrath, J. (1998) Biochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol 15: 187193.
  • Schönheit, P., Kristjansson, J.K., and Thauer, R.K. (1982) Kinetic mechanism for the ability of sulfate-reducers to outcompete methanogens for acetate. Arch Microbiol 132: 285288.
  • Senior, E., Borje Lindstrom, E., Banat, I.M., and Nedwell, D.B. (1982) Sulfate reduction and methanogenesis in the sediment of a Saltmarsh on the East Coast of the United Kingdom. Appl Environ Microbiol 43: 987996.
  • Shi, T., Reeves, R.H., Gilichinsky, D.A., and Friedmann, E.I. (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecol 33: 169179.
  • Singh, N., Kendall, M.M., Liu, Y., and Boone, D.R. (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55: 25312538.
  • Thomsen, T.R., Finster, K., and Ramsing, N.B. (2001) Biogeochemical and molecular signatures of anaerobic methane oxiation in marine sediment. Appl Environ Microbiol 67: 16461656.
  • Vainshtein, M.B., Gogotova, G.I., and Hippe, H. (1995) A sulfate-reducing bacterium from permafrost. Microbiology 64: 436439.
  • Wagner, D., Kobabe, S., Pfeiffer, E.-M., and Hubberten, H.-W. (2003) Microbial controls on Methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost Periglac Process 14: 173185.
  • Wagner, D., Lipski, A., Embacher, A., and Gattinger, A. (2005) Methane fluxes in extreme permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7: 15821592.
  • Wagner, D., Gattinger, A., Embacher, A., Pfeiffer, E.M., Schloter, M., and Lipski, A. (2007) Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biol 13: 10891099.
  • Watanabe, T., Asakawa, S., Nakamura, A., Nagaoka, K., and Kimura, M. (2004) DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS. Microbiol Lett 232: 153163.
  • Webster, C.R. (2005) Measuring methane and its isotope 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy. Appl Optics 44: 12261235.
  • Winfrey, M.R., and Zeikus, J.G. (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater. Appl Environ Microbial 33: 275281.
  • Zhang, T., Barry, R.G., Knowles, K., Heginbotton, J.A., and Brown, J. (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23: 132154.
  • Zhuang, Q., Melillo, J.M., Kicklighter, D.W., Prinn, R.G., McGuire, A.D., Steudler, P.A., et al. (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern latitudes during past century: a retrospective analysis with a process-based biogeochemistry model. Global Biogeochem Cycles 18: 30103033.
  • Zimov, S.A., Schuur, E.A.G., and Chapin, F.S., III (2006) Permafrost and the Global Carbon Budget. Science 312: 16121613.