Get access

Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters

Authors


*E-mail aquadoc@uga.edu; Tel. (+1) 706 542 5868; Fax (+1) 706 542 5888.

Summary

We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0–45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45–105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105–3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.

Get access to the full text of this article

Ancillary